07/9/2021 News What Kind of Chemistry Facts Are We Going to Learn About 1111-67-7

Keep reading other articles of 1111-67-7! Don’t worry, you don’t need a PhD in chemistry to understand the explanations! Reference of 1111-67-7, you can also check out more blogs aboutReference of 1111-67-7

When developing chemical systems it’s of course important to gain a deep understanding of the chemical reaction process. Reference of 1111-67-7, Name is Cuprous thiocyanate, Reference of 1111-67-7, molecular formula is CCuNS. In a article,once mentioned of Reference of 1111-67-7

In this work, we report the effects of NNS-thiolate ligands and nuclearity (monomer, dimer) on the stability of iron complexes related to the active site of monoiron hydrogenase (Hmd). A thermally stable iron(II) dicarbonyl motif is the core feature of the active site, but the coordination features that lead to this property have not been independently evaluated for their contributions to the {Fe(CO)2}2+ stability. As such, non-bulky and bulky benzothiazoline ligands (thiolate precursors) were synthesized and their iron(II) complexes characterized. The use of non-bulky thiolate ligands and low-temperature crystallizations result in isolation of the dimeric species [(NNS)2Fe2(CO)2(I)2] (1), [(NPhNS)2Fe2(CO)2(I)2] (2), and [(MeNNS)2Fe2(CO)2(I)2] (3), which exhibit dimerization via thiolato (mu2-S)2 bridges. In one particular case (unsubstituted NNS ligand), the pathway of decarbonylation and oxidation from 1 was crystallographically elucidated, via isolation of the half-bis-ligated monocarbonyl dimer [(NNS)3Fe2(CO)]I (4) and the fully decarbonylated and oxidized mononuclear [(NNS)2Fe]I (5). The transformations of dicarbonyl complexes (1, 2, and 3) to monocarbonyl complexes (4, 6, and 7) were monitored by UV/vis, demonstrating that 1 and 3 exhibit longer t1/2 (80 and 75 min, respectively) than 2 (30 min), which is attributed to distortion of the ligand backbone. Density functional theory calculations of isolated complexes and putative intermediates were used to corroborate the experimentally observed IR spectra. Finally, dimerization was prevented using a bulky ligand featuring a 2,6-dimethylphenyl substituent, which affords mononuclear iron dicarbonyl complex, [(NPhNSDMPh)Fe(CO)2Br] (8), identified by IR and NMR spectroscopies. The dicarbonyl complex decomposes to the decarbonylated [(NPhNSDMPh)2Fe] (9) within minutes at room temperature. Overall, the work herein demonstrates that the thiolate moiety does not impart thermal stability to the {Fe(CO)2}2+ unit formed in the active site, further indicating the importance of the organometallic Fe-C(acyl) bond in the enzyme.

Keep reading other articles of 1111-67-7! Don’t worry, you don’t need a PhD in chemistry to understand the explanations! Reference of 1111-67-7, you can also check out more blogs aboutReference of 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”