Reactions catalyzed within inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media. We’ll be discussing some of the latest developments in chemical about CAS: Related Products of 1111-67-7, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Related Products of 1111-67-7In an article, authors is Pai, Narendra, once mentioned the new application about Related Products of 1111-67-7.
Silver bismuth iodides (AgaBibIa+3b) are nontoxic and comparatively cheap photovoltaic materials, but their wide bandgaps and downshifted valence band edges limit their performance as light absorbers in solar cells. Herein, a strategy is introduced to tune the optoelectronic properties of AgaBibIa+3b by partial anionic substitution with the sulfide dianion. A consistent narrowing of the bandgap by 0.1 eV and an upshift of the valence band edge by 0.1?0.3 eV upon modification with sulfide are demonstrated for AgBiI4, Ag2BiI5, Ag3BiI6, and AgBi2I7 compositions. Solar cells based on silver bismuth sulfoiodides embedded into a mesoporous TiO2 electron-transporting scaffold, and a poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] hole-transporting layer significantly outperform devices based on sulfide-free materials, mainly due to enhancements in the photocurrent by up to 48%. A power conversion efficiency of 5.44 ± 0.07% (Jsc = 14.6 ± 0.1 mA cm?2; Voc = 569 ± 3 mV; fill factor = 65.7 ± 0.3%) under 1 sun irradiation and stability under ambient conditions for over a month are demonstrated. The results reported herein indicate that further improvements should be possible with this new class of photovoltaic materials upon advances in the synthetic procedures and an increase in the level of sulfide anionic substitution.
This is the end of this tutorial post, and I hope it has helped your research about 1111-67-7 Related Products of 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”