Downstream synthetic route of 13395-16-9

The synthetic route of 13395-16-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13395-16-9,Bis(acetylacetone)copper,as a common compound, the synthetic route is as follows.

Complex (6) C26H33Cu2N5O14 (FW = 734.66) was prepared by refluxing a hot ethanolic solution of the copper(II) complex (2), (473 mg, 1 mmol) with a hot ethanolic solution of the copper acetyl acetonate (188 mg, 1 mmol). The reaction mixture was refluxed for three hours with stirring. The precipitate so formed, was filtered off, washed with ethanol and dried in vacuum desiccators over CaCl2, Yield 72%, 5.29 gm. Color: Dark brown, m.p. > 300, Elemental Analyses. Calc.: C, 42.51; H, 4.53; N, 9.53; Cu, 15.30; Found: C, 42.21; H, 4.43; N, 9.66; Cu,16.97. IR (KBr, cm-1), 3448(br) nu(H2O), 1685 nu(C=OAcAc), 1670 nu(C=OAcetyl), 1602 nu(C=Nimine), 1570 nu(C=Noxime), 1285 nu(C-OAcAc), 1168 nu(N-O), 670, nu(M-O), 628 nu(M?O), 572 nu(M-N), 510 nu(M?N). Molar conductance (Lambda) is 28.20 Omega-1 cm2 mol-1.

The synthetic route of 13395-16-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; El-Tabl, Abdou S.; Shakdofa, Mohamad M.E.; Whaba, Mohammed Ahmed; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1941 – 1949;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 6046-93-1

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.6046-93-1,Copper(II) acetate hydrate,as a common compound, the synthetic route is as follows.

meso-Tetraphenylporphyrin (TPP)(2 g, 3.25 mmol) was dissolved in CH2Cl2 (160 mL) and methanol (50 mL). Cu(OAc)2¡¤H2O (1.2 g,5.85 mmol) was added and the mixture was heated to reflux for 2 h until all starting material wasconsumed (TLC, UV-vis). Solvents were evaporated to give a red-purple residue that was filteredthrough a short plug of silica. After filtration, the product 3 was obtained as a dark purple sparklingsolid (2.2 g, 3.25 mmol, 99%)

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

Reference£º
Article; Blom, Magnus; Norrehed, Sara; Andersson, Claes-Henrik; Huang, Hao; Light, Mark E.; Bergquist, Jonas; Grennberg, Helena; Gogoll, Adolf; Molecules; vol. 21; 1; (2016);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 34946-82-2

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

To a solution of 2.00 g (4.82 mmol) of the above ieri-butyl ester in dimethylsulfoxide (15 mL) is added 1.10 mL (10.1 mmol) of dimethylethylenediamine followed by 0.983 g (9.64 mmol) of sodium methanesulfinate, and 1.74 g (4.82 mmol) of copper (II) triflate. The mixture is heated at 130 C under argon for 2 hours. The mixture is cooled to room temperature and diluted with water causing a solid to precipitate from solution. The formed solid is collected by filtration, washed with water, and dried on the filter pad. The residue is purified by flash silica gel chromatography to give 1.03 g (52.0%) of (5′- methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-ylmethyl)-carbamic acid ie/ -butyl ester as a brown resin.

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7758-99-8

As the paragraph descriping shows that 7758-99-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7758-99-8,Copper(II) sulfate pentahydrate,as a common compound, the synthetic route is as follows.

Using a 50 mL volumetric flask, 1.208 g of copper sulfate as a metal salt was dissolved in 50 mL of distilled water to prepare a 0.1 mol / L CuSO 4 aqueous solution. Next, 0.02 g (3.3 ¡Á 10 -5 mol) of tetraphenylporphyrin (TPP) as a compound having a porphyrin-type skeleton, 0.02 g (3.3 ¡Á 10 -5 mol) of copper sulfate Aqueous solution of sodium carbonate and 0.032 g of sodium carbonate equivalent to copper sulfate to prevent corrosion of the reaction vessel, and the interior of the reaction vessel was purged with argon and sealed. Next, the reaction vessel was charged into the sand bath set at 350 C. The reaction temperature in the reaction vessel reached the reaction temperature in about 4 minutes.

As the paragraph descriping shows that 7758-99-8 is playing an increasingly important role.

Reference£º
Patent; UTSUNOMIYA UNIVERSITY; SATO, TAKAFUMI; ITOH, NAOTSUGU; ITO, SATOSHI; (22 pag.)JP5823988; (2015); B2;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 13395-16-9

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13395-16-9,Bis(acetylacetone)copper,as a common compound, the synthetic route is as follows.

A yellow solution of H4L (0.30mmol, 0.068g) in dmf (6mL) was added to a turquoise solution of Cu(acac)2 (0.30mmol, 0.079g) in dmf (20mL). The immediately formed green solution was refluxed for 3h and left for slow evaporation. X-ray quality blue crystals of 3¡¤1.5dmf were formed after 2months, which were filtered off and dried under vacuum. (Yield: 0.053g, ?60%). The solid was analyzed as solvent free. C44H56Cu4N4O18 requires: C, 44.67; H, 4.77; N, 4.73%. Found: C, 44.49; H, 4.74; N, 4.70. FT-IR (KBr pellets, cm-1): 3553(s), 3477(s), 3414(s), 1638(s), 1617(vs), 1578(s), 1553(s), 1533(s), 1462(w), 1413(m), 1384(m), 1355(s), 1275(s), 1189(s), 1020(s), 937(s), 782(s), 684(m), 653(w), 613(s), 480(m), 455(s).

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

Reference£º
Article; Lazarou, Katerina N.; Savvidou, Aikaterini; Raptopoulou, Catherine P.; Psycharis, Vassilis; Polyhedron; vol. 152; (2018); p. 125 – 137;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

A solution of CuBr (0.0173 g, 0.12 mmol) in 10 mL of acetonitrile was added dropwise to a solution of 4 (0.048 g, 0.12 mmol) in 10 mL of dichloromethane at room temperature. The reaction mixture was stirred for 4 h. The solvent was removed under reduced pressure to obtain 8 as a brown crystalline solid. Yield: 82% (0.054 g). Mp: >195 C (dec). Anal. Calc. for C42H44Cu2Br2N2P2Se2¡¤CH3CN: C, 46.99; H, 4.21; N, 3.74. Found: C, 46.77; H, 4.10; N, 3.79%. 1H NMR (400 MHz, CDCl3) delta 7.73-7.02 (m, Ar, 28H), 3.43 (s, CH2, 4H), 2.46 (s, NMe2, 12H). 31P{1H} NMR (162 MHz, CDCl3): delta 23.2 (br s).

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Ananthnag, Guddekoppa S.; Edukondalu, Namepalli; Mague, Joel T.; Balakrishna, Maravanji S.; Polyhedron; vol. 62; (2013); p. 203 – 207;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 34946-82-2

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

General procedure: The solution of CuX2 salt (0.5 mmol, 120.8 mg of Cu(NO3)23H2Ofor 3a/b and 180.8 mg of Cu(CF3SO3)2 for 4) in 5.0 mL of ethanol (3aand 4) or methanol (3b) was mixed with the solution of anequimolar amount of 1,7-phen (90.1 mg) in 5.0 mL of ethanol (3aand 4) or methanol (3b). After addition of 1,7-phen, a solutionchanged color from blue to green, and no formation of metalliccopper was observed. The reaction mixture was stirred at roomtemperature for 3-4 h and then left at room temperature to slowlyevaporate. Crystals of compounds 3a/b were obtained from themother solution, while those of compound 4 were obtained after recrystallization of the solid product formed from the reactionmixture in 15.0 mL of acetonitrile. These crystals were filtered offand dried at ambient temperature. Yield (calculated on the basisof 1,7-phen): 65.7 mg (54%) for 3a, 74.2 mg (61%) for 3b and94.1 mg (57%) for 4.

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Article; Stevanovi?, Nevena Lj.; Andrejevi?, Tina P.; Crochet, Aurelien; Ilic-Tomic, Tatjana; Dra?kovi?, Nenad S.; Nikodinovic-Runic, Jasmina; Fromm, Katharina M.; Djuran, Milo? I.; Gli?i?, Biljana ?.; Polyhedron; vol. 173; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Cuprous iodide (0.198 g, 1.04 mmol)Adding to a solution of 3,4-bis(diphenylphosphino)-2,5-dimethylthiophene (dpmt) (0.500 g, 1.04 mmol) synthesized in Example 1 in 30 mL of CH2Cl2,The mixture was stirred at room temperature for 5 h. Filter the reaction mixture,The solvent was removed under reduced pressure to give a pale yellow powder.The powder was dissolved in dichloromethane and recrystallized to give 0.615 g of yellow crystals.That is, the complex 1 was found to have a yield of 88.1%.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Patent; Hubei University; Liu Li; Wei Qiong; (15 pag.)CN108997382; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 14172-91-9

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

14172-91-9, 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(a) N-Bromosuccinimide (0.026 g, 0.148 mmol) was added with stirring in four portions to a solution of 0.02 g (0.0296 mmol) of complex 5 in 10 mL of chloroform. After addition of NBS portion, the reaction mixture was heated under reflux for 5 min. The mixture was cooled, water was added, the organic layer was separated, washed with water, dried with Na2SO4, concentrated to minimal volume, chromatographed on aluminum oxide (using hexane, chloroform-hexane 1 : 2, and then chloroform as eluent), and reprecipitated from ethanol. Yield 0.02 g (0.0202 mmol), 69%. (b) N-Bromosuccinimide (0.0315 g, 0.177 mmol) was added with stirring to a solution of 0.02 g (0.0296 mmol) of complex 5 in a mixture of 10 mL of chloroform and 1 mL of DMF. The reaction mixture was stirred at ambient temperature for 3.5 h. The mixture was treated similarly to method a. Yield 0.021 g (0.0212 mmol), 72%. (c) A mixture of 0.02 g (0.0215 mmol) of porphyrin 3 and 0.038 g (0.215 mmol) of Cu(OAc)2 was dissolved in 10 mL of DMF and the reaction mixture was heated to reflux. The mixture was cooled, poured into water, solid NaCl was added, the precipitate was separated by filtration, washed with water, dried, and chromatographed on aluminum oxide using chloroform as an eluent. Yield 0.018 g (0.0182 mmol), 86%. MS (m/z (Irel, %)): 991 (53) [M]+; for C44H24N4Br4Cu calcd.: 992. IR (nu, cm-1): 2925 s, 2854 m nu(C-H, Ph), 1614 w, 1489 s nu(C=C, Ph), 1466 w, 1457 m nu(C=N), 1367 m, 1351 m nu(C-N), 1193 s, 1169 m, 1145 m, 1039 m delta(C-H, Ph), 1013 m nu(C-C), 862 s, 775 m gamma(C-H, pyrrole ring), 749 m, 693 m gamma(C-H, Ph). For C44H24N4Br4Cu anal. calcd. (%): C, 53.28; N, 5.65; H, 2.44; Br, 32.22. Found (%): C, 53.02; N, 5.53; H, 2.48; Br, 32.08.

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 578743-87-0

578743-87-0 [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride 0, acopper-catalyst compound, is more and more widely used in various.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a glove box, IPrCuCl (100 mg, 0.205 mmol) and potassium tris (3,5 – dimethyl – 1 – pyrazolyl) borohydride (76.3mg, mmol) in THF in a 20 mixture was stirred at room temperature for 5 hours to dongan It was. Filtered through a plug of after the reaction mixture was Celite and the solvent was evaporated under reduced pressure to give product IPrCuTp * as a white powder

578743-87-0 [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride 0, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; University Of Southern California; Thompson, Mark E; Hamz, Rasya; Durovitch, Peter I; (50 pag.)KR2015/26932; (2015); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”