Some tips on 578743-87-0

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a glovebox, a 30 mL round-bottom flask was charged with (IPr)CuCl (969.0 mg, 2.00 mmol) and NaOtBu (192.0 mg, 2.00 mmol). Anhydrous THF (12.0 mL) was added. The resulting opaque brown solution was stirred for 2.0 h. It was filtered through Celite in glovebox and concentrated in vacuo affording (IPr)Cu(OtBu) as an off-white powder (802.2 mg, 79% yield).

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

Reference£º
Article; Zeng, Wei; Wang, Enyu; Qiu, Rui; Sohail, Muhammad; Wu, Shaoxiang; Chen, Fu-Xue; Journal of Organometallic Chemistry; vol. 743; (2013); p. 44 – 48;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 1317-39-1

1317-39-1 Copper(I) oxide 10313194, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1317-39-1,Copper(I) oxide,as a common compound, the synthetic route is as follows.

3-Chloro-4-nitro-benzonitrile Sodium nitrite (6.78 g in water (40 mL) at 0 C.) was slowly added to a solution of 4-amino-3-chloro-benzonitrile (10.5 g) in water (30 mL) and concentrated hydrochloric acid (30 mL) also at 0 C. After 10 minutes the solution was poured onto a suspension of cuprous oxide (3.48 g) and sodium nitrite (31.69 g) in water (100 mL) at 0 C. The ensuing mixture was stirred at 0 C. for 1 hour then at 23 C. for 1 hour. The resulting mixture was extracted with dichloromethane and the organic layer washed with saturated sodium chloride. The separated organic layer was dried over sodium sulfate and then concentrated to give 3-chloro-4-nitro-benzonitrile (11.31 g).

1317-39-1 Copper(I) oxide 10313194, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Pfizer Inc.; US2003/78432; (2003); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 142-71-2

As the paragraph descriping shows that 142-71-2 is playing an increasingly important role.

142-71-2, Copper(II) acetate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

0.118 g (0.65 mmol) of Cu(OAc)2 was added to a solution of 0.04 g (0.065 mmol)of 2 in 50 mL of DMF. The reaction mixture was refluxed during 2 min and cooled to ambient; five-fold excess of water and NaCl was added. The precipitate was filtered off, washed with water, and dried. Yield 0.04 g (0.059 mmol) of CuTPP.

As the paragraph descriping shows that 142-71-2 is playing an increasingly important role.

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 14172-91-9

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14172-91-9,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),as a common compound, the synthetic route is as follows.

Weigh 5,10,15,20-tetraphenyl copper porphyrin 1.000 g (1.5 mmol) was dissolved in a three-necked flask containing 175 mL of chloroform and dissolved by electromagnetic stirring at 40 C,Then add 15 mL of acetic acid,40 mL of acetic anhydride, followed by addition of .28 g (1.5 mmol) of copper nitrate, the reaction was carried out for about 25 min. Thin layer chromatography was carried out until the feed point was almost disappeared, poured into 200 mL of ice water mixture, neutralized with sodium hydroxide solution to pH = 9, and then washed several times, dried with anhydrous sodium sulfate, standing for one hour, pumping, the filtrate was concentrated to saturation, add 30mL hot methanol recrystallization.The solid was washed with methanol to a colorless, dry, bright purple crystal, beta-nitro-5,10,15,20-tetraphenyl copper porphyrin 0.90 g, yield 84%.

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Wuhan Institute of Technology; Gao, Hong; Wang, Huidong; Chen, Chujun; Huang, Qihao; (17 pag.)CN106366086; (2017); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 13395-16-9

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

13395-16-9, Bis(acetylacetone)copper is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: CZTS nanoparticles were synthesized at different temperatures(220-320 C) for 3 hours and for variousreaction times (2-5 hours) at 240 C, usinghigh-temperature arrested precipitation in the coordinatingsolvent, oleylamine (OLA).15 Under the reactiontime of 3 hours, the reactants for synthesis ofCZTS nanoparticles didn?t dissolve enough in OLA.

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

Reference£º
Article; Kim, Donguk; Kim, Minha; Shim, Joongpyo; Kim, Doyoung; Choi, Wonseok; Park, Yong Seob; Choi, Youngkwan; Lee, Jaehyeong; Journal of Nanoscience and Nanotechnology; vol. 16; 5; (2016); p. 5082 – 5086;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 13395-16-9

The synthetic route of 13395-16-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13395-16-9,Bis(acetylacetone)copper,as a common compound, the synthetic route is as follows.

Cu(C5H7O2)2 (13.1 mg, 0.05 mmol) was solubilized in 5 mL of methanoland added to a 5 mL of methanolic solution of HL (24.0 mg,0.1 mmol). The mixture was stirred under reflux for 1 h. Dark greencrystals suitable for X-ray diffraction analysis were obtained after somedays from the mother liquor at room temperature. Yield: 22.9 mg(84.5%). Melting point: Decomposes after 260 C. Molar conductivity(1 mM, DMF): 0.35 Omega-1¡¤cm2¡¤mol-1 Elemental analysis calculated forC26H22O2N8Cu (%): C. 57.61; H. 4.09; N. 20.67. Found (%): C. 57.65; H.3.83; N. 20.64. IR bands (KBr, cm-1): nu(CeO) 1371; nu(C]N) 1580,1557; nu(NeN) 1160; rho(py) 735. ESI-MS [C26H23O2N8Cu]+ calcd./found(m/z)=542.1240, 542.1251.

The synthetic route of 13395-16-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Santiago, Pedro H.O.; Santiago, Mariana B.; Martins, Carlos H.G.; Gatto, Claudia C.; Inorganica Chimica Acta; vol. 508; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 6046-93-1

6046-93-1 Copper(II) acetate hydrate 165397, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.6046-93-1,Copper(II) acetate hydrate,as a common compound, the synthetic route is as follows.

A mixed solvent of 75 ml of chlorobenzene and 50 ml of N,N-dimethylformamide (DMF) was added to a 250 ml three-neck distillation flask. Add 5,10,15,20-tetraphenylporphyrin (H2TPP) (0.50 g, 0.81 mmol) start stirring, after the solid is dissolved, add an appropriate amount of copper acetate monohydrate (Cu(OAc)2*H2O) (0.324 g 1.62 mmol). Put about 3g of potassium carbonate (K2CO3) in the alkali storage chamber, the mixture in the reaction kettle was heated to 150 C and kept under reflux. The progress of the reaction (UV-Vis) is monitored by thin layer chromatography (TLC) or ultraviolet visible absorption spectroscopy until the complete reaction of H2TPP is completed. The solvent is distilled off under vacuum. The remaining solid was dissolved in 150 ml of chloroform. Wash three times with 50 ml of water each time, then collect these liquids in a static layer. The organic layer was further washed three times with 50 ml of saturated sodium bicarbonate solution. Then dried with potassium sulfate (K2SO4), The solvent is distilled off under vacuum. The remaining solid was recrystallized from chloroform/heptane. A purple crystalline solid product of 0.526 g was obtained in a yield of 96%.

6046-93-1 Copper(II) acetate hydrate 165397, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Guangzhou Lvying Environmental Protection Technology Co., Ltd.; Yao Shu; Chen Liangming; Qiao Nasen¡¤wudong; (8 pag.)CN109651381; (2019); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7758-99-8

7758-99-8 Copper(II) sulfate pentahydrate 24463, acopper-catalyst compound, is more and more widely used in various.

7758-99-8, Copper(II) sulfate pentahydrate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0146] Sodium nitrite (2.35 g, 34.13mmol) solution (40 mL) was added dropwise to 4- Chloro-2-fluoro aniline (4. [5G,] 31mmol) in 170 mL HBr [AT-10C] bath temperature, then the mixture was stirred for 30 min at-10C bath temperature. In parallel, copper sulfate (10.22g, 24. [29MMOL)] and sodium bromide (3.79 g, 36. [8MMOL)] were mixed and the reaction mixture was heated at [60C] for 30 min. Then sodium sulfite (2.66g, 21. [2MMOL)] was added into this copper sulfate reaction mixture and heated for [95C] for 30 min. The reaction mixture was cooled to room temperature and solid formed was washed with water to afford white solid cuprous bromide. The diazonium salt was portion wise added into the freshly prepared cuprous bromide in 40 mL HBr [AT-10C] bath temperature and the reaction mixture was then warmed to room temperature. The reaction mixture was heated at [55C] for 20 min, cooled and then extracted with ethyl acetate three times. The combined organic layer was washed with water and saturated brine solution, dried over sodium sulfate and concentrated. The crude material was purified by column chromatography (5: 95 ethyl acetate: pet ether) to afford solid product.

7758-99-8 Copper(II) sulfate pentahydrate 24463, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; CHEMOCENTRYX, INC.; WO2003/105853; (2003); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7758-89-6

7758-89-6 Cuprouschloride 62652, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7758-89-6,Cuprouschloride,as a common compound, the synthetic route is as follows.

EXAMPLE 1 N2-(4-Bromophenyl)-5-trifluoromethyl-1,3-benzoxazol-2-amine 4-Bromophenyl isothiocyanate (1.667 g, 7.785 mmol) was added to a solution of 2-amino-4-trifluoromethylphenol (1.379 g, 7.785 mmol) in tetrahydrofuran (THF) (100 mL) and the reaction was stirred at room temperature for about 16 hours then at about 50 C. for about another 5 hours. Copper (I) chloride (0.771 g, 7.785 mmol) and triethylamine (1.08 mL, 7.785 mmol) were added, and the mixture was stirred at room temperature for about 72 hours and then at about 50 C. for about another 18 hours. Additional copper (I) chloride (0.385 g) was added and the reaction was stirred at about 60 C. for about another 2 hours. The reaction was concentrated under reduced pressure, dissolved in methanol (200 mL), filtered through a pad of diatomaceous earth and the solvent removed in vacuo to afford N2-(4-bromophenyl)-5-trifluoromethyl-1,3-benzoxazol-2-amine as a brown solid (3.90 g, 140% of theory); RP-HPLC Rt 17.627 min, 77% purity (5% to 85% acetonitrile/0.1 M aqueous ammonium acetate, buffered to pH 4.5, over 20 min at 1 mL/min; lambda=254 nm; Waters Deltapak C18, 300 A, 5 mum, 150*3.9 mm column); and m/z 354.9 and 356.9 (M-H)-.

7758-89-6 Cuprouschloride 62652, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Wishart, Neil; Ritter, Kurt; US2003/9034; (2003); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 660-60-6

660-60-6 Copper(II) stearate 93553, acopper-catalyst compound, is more and more widely used in various.

660-60-6, Copper(II) stearate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a screw-cap reaction tube was added symmetrical N,N?-disubstituted guanidines 1a (0.2 mmol), PdCl2 (5 mol%, 1.8 mg), CuX2 (0.44 mmol). The reaction tube was evacuated and back-filled with CO (three times, balloon). PhCN (2 mL) was added using a syringe and the mixture was heated to the desired temperature with use of an oil bath. When the reaction was completed (detected by TLC), the mixture was cooled to room temperature and vented to discharge the excess CO. After the reaction was completed, the solvent was concentrated by evaporation in vacuo. The residue was purified by flash column chromatography on silica gel to afford the desired product Amides 6a with petroleum ether/ethyl acetate as the eluent.

660-60-6 Copper(II) stearate 93553, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Chang, Denghu; Zhu, Dan; Zou, Peng; Shi, Lei; Tetrahedron; vol. 71; 11; (2015); p. 1684 – 1693;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”