Analyzing the synthesis route of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid. (0027) [CuBr(CNXyl)3] (1). Yield 530mg, 99%. Anal. Calc. for C27H27N3BrCu: C, 60.39; H, 5.07; N, 7.83. Found: C, 59.88; H, 4.89; N, 7.70%. HRESI+-MS, m/z: 325.0756 ([M-(XylNC)2]+, calcd 325.0760). IR spectrum in KBr, selected bands, cm-1: 2136 s nu(C?N). 1H NMR in CDCl3, delta: 2.49 (s, 6H, CH3), 7.11 (d, J 7.6Hz, 2H, aryl) 7.23 (d, J 7.6Hz, 1H, aryl). 13C{1H} NMR in CDCl3, delta: 18.95 (CH3), 127.92, 129.33, 135.49 (aryl).

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 34946-82-2

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of Cu(OTf)2 (90.0 mg, 0.249 mM) in methanol was added to a solution of HLpz (53.5 mg, 0.250 mM) and triethylamine (25.0 mg, 0.250 mM) in methanol, affording a dark green solution. A solution of NaN3 (16.3 mg, 0.250 mM) was then layered on the above solution from which blue crystals of 3 suitable for X-ray analysis were obtained (55 mg, 69% yield). Anal. Calcd for C11H9CuN7O: C,41.44; H, 2.85; N, 30.76. Found: C, 40.56; H, 2.77; N, 30.18. UV-vis (CH3OH) [lambdamax, nm(epsilon, M-1 cm-1)]: 354 (5000), 646 (290). FTIR (KBr): 3430, 2055, 1640, 1376, 1164, 1050,866, 769, 660 cm-1. EPR (9.450 GHz, Mod. Amp. 5.0 G, CH3OH, 77 K): g|| = 2.248,g? 2:037, and A|| = 165 G. ESI-MS (MeOH): m/z = 341 [Cu(Lpz)N3 + Na]+, 659{[Cu(Lpz)N3]2 + Na}+, 977 {[Cu(Lpz)N3]3 + Na}+.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Houser, Robert P.; Wang, Zhaodong; Powell, Douglas R.; Hubin, Timothy J.; Journal of Coordination Chemistry; vol. 66; 23; (2013); p. 4080 – 4092;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, General procedure: A solution of cuprous chloride (5.8 mg, 0.058 mmol) in acetonitrile(10 mL) was added dropwise to a well stirred solution of 1(30 mg, 0.058 mmol) in dichloromethane (10 mL) at room temperaturewith constant stirring. After stirring for 6 h, the solvent wasremoved under reduced pressure and the residue obtained wasfurther washed with petroleum ether to give 4 as white solid product.Yield

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Bhat, Sajad A.; Mague, Joel T.; Balakrishna, Maravanji S.; Inorganica Chimica Acta; vol. 443; (2016); p. 243 – 250;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole (L)(0.0624 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL), 1:CH3CN (4 mL). After three days of hydrothermal treatment at 100 oC, the solution was slowly cooled to room temperature. After opening the kettle for the X-ray single crystal diffraction analysis of the yellow rod-like crystals. Yield: 35% (based on L).

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104513260; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.,7787-70-4

(a) Preparation of 1-(3,4-dimethoxyphenyl)indole-2-carboxylic acid ethyl ester 4-Bromoveratrole (8.8 g, 40 mmol), indole-2-carboxylic acid ethyl ester (1.9 g, 10 mmol), potassium carbonate (1.9 g), copper- (I) bromide (o.2 g), pyridine (2 ml) and nitrobenzene (10 ml) were stirred at 140 C. for 14 hours. After cooling to room temperature, the reaction mixture was applied onto a silica gel flash chromatography column (silica gel: 140 g). The column was subsequently eluted with toluene (500 ml), toluene/acetone (95:5, 500 ml) and toluene/acetone (90:10, 500 ml). 1-(3,4-Dimethoxyphenyl)indole-2-carboxylic acid ethyl ester was eluted with toluene/acetone (90:10) and gave colorless crystals upon evaporation of the solvent. The crystals were triturated with diisopropyl ether, collected by vacuum filtration and dried in the air. Yield: 3.0 g. (92% of theoretical yield) M.pt.: 126-128 C. Rf (toluene/acetone, 9:1)=0.53.

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Reference£º
Patent; Shell Research Limited; US5399559; (1995); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

General procedure: The solution of CuX2 salt (0.5 mmol, 120.8 mg of Cu(NO3)23H2Ofor 3a/b and 180.8 mg of Cu(CF3SO3)2 for 4) in 5.0 mL of ethanol (3aand 4) or methanol (3b) was mixed with the solution of anequimolar amount of 1,7-phen (90.1 mg) in 5.0 mL of ethanol (3aand 4) or methanol (3b). After addition of 1,7-phen, a solutionchanged color from blue to green, and no formation of metalliccopper was observed. The reaction mixture was stirred at roomtemperature for 3-4 h and then left at room temperature to slowlyevaporate. Crystals of compounds 3a/b were obtained from themother solution, while those of compound 4 were obtained after recrystallization of the solid product formed from the reactionmixture in 15.0 mL of acetonitrile. These crystals were filtered offand dried at ambient temperature. Yield (calculated on the basisof 1,7-phen): 65.7 mg (54%) for 3a, 74.2 mg (61%) for 3b and94.1 mg (57%) for 4.

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Article; Stevanovi?, Nevena Lj.; Andrejevi?, Tina P.; Crochet, Aurelien; Ilic-Tomic, Tatjana; Dra?kovi?, Nenad S.; Nikodinovic-Runic, Jasmina; Fromm, Katharina M.; Djuran, Milo? I.; Gli?i?, Biljana ?.; Polyhedron; vol. 173; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

The complex was prepared according a known procedure [11] , starting from LHMe2 (0.157?g, 1?eq) dissolved in acetone (10?ml) and Et3N (150?mul). A solution of Cu(OTf)2 (0.272?g, 2.1?eq) in acetonitrile (10?ml) was added, and the mixture was stirred for 1?h. The mixture was then concentrated, di-isopropylether (10?ml) was added and the solution was placed at -20?C for 1?week to give the pure complex [Cu2(LMe2)(mu-OH)][OTf] (73?mg, 28%) as a dark solid. ESI-MS (CH3CN), m/z: z?=?1, 589 (M-OTf)+, UV-Vis (CH3CN) (epsilon, M-1?cm-1): 242 (23000), 281 (14000), 326 (16000) 338 (16000), 390 (18000), 760 (185) Anal. Calcd. for C25H27Cu2N6O5S2F3: C, 40.59; H, 3.68; N, 11.36. Found C, 40.62; H, 3.85; N, 11.13.

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Article; Gennarini, Federica; Kochem, Amelie; Isaac, James; Mansour, Ali-Taher; Lopez, Isidoro; Le Mest, Yves; Thibon-Pourret, Aurore; Faure, Bruno; Jamet, Helene; Le Poul, Nicolas; Belle, Catherine; Simaan, A. Jalila; Reglier, Marius; Inorganica Chimica Acta; vol. 481; (2018); p. 113 – 119;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

With the complex challenges of chemical substances, we look forward to future research findings about 578743-87-0,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, and cas is 578743-87-0, its synthesis route is as follows.,578743-87-0

In a dry double-mouth bottle to place Pt – 1 (0.0544 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.045 g, and the yield is 40%.

With the complex challenges of chemical substances, we look forward to future research findings about 578743-87-0,belong copper-catalyst compound

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO73,mainly used in chemical industry, its synthesis route is as follows.,7787-70-4

General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1 mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martn, Enrique; Lemus, Luis; Costamagna, Juan; Faras, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2015); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO138,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

Ligand H2L1 (100 mg, 0.254 mmol) wasadded to the clear solution ofCu(OTf)2 (275 mg, 0.763 mmol)in 10 mL MeNO2 forming a clear light blue colored solutionand the reaction mixture was stirred for 30 min at 50 C.The light blue solution thus formed was filtered and left inopen air for slow evaporation. Blue-green crystals suitable forX-ray structural analysis were formed after 24 h. (Yield: 76%)Anal. Calcd. for C26H36Cu4F12N10O32S4: C, 19.38; H, 2.25;N, 8.69%. Found. C, 19.12; H, 2.65; N, 8.50%. IR (nu, cm-1):3501.15 (H2O); 1674.56 (C=O); 1644.45 (C=N).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”