Application of (S)-(1-Ethylpyrrolidin-2-yl)methanamine

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

A common heterocyclic compound, the copper-catalyst compound, name is Copper(I) bromide,cas is 7787-70-4, mainly used in chemical industry, its synthesis route is as follows.,7787-70-4

General procedure: A mixture of CuCl (19.6mg, 0.2mmol) and dppb (89.3mg, 0.2mmol) with an excess of batho (66.5mg, 0.2mmol) were dissolved in CH2Cl2 (5mL) and 17 CH3OH (5mL) solution, stirred at room temperature for 6h. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature to yield yellow crystalline products.

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Yu, Xiao; Fan, Weiwei; Wang, Guo; Lin, Sen; Li, Zhongfeng; Liu, Min; Yang, Yuping; Xin, Xiulan; Jin, Qionghua; Polyhedron; vol. 157; (2019); p. 301 – 309;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 5-Fluoro-2-methylbenzo[d]oxazole

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

A common heterocyclic compound, the copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate,cas is 34946-82-2, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

Ligand L2/L2? (15.2 mg, 63 mumol) was dissolved in ethylacetate (5 mL) and a solution of Cu(OTf)2 (11.4 mg, 31.5mumol) in ethyl acetate (3 mL) was added. The blue precipitatewas isolated by filtration with suction and dried at air;yield: 26 mg (98%). Crystals suitable for X-ray diffractionanalysis were obtained when a solution of the precipitatein the necessary amount of ethyl acetate was concentratedby slow evaporation. M.p. 255.5-256.5C. – IR (KBr): IR(KBr): = 3259 s br (NH), 3151 w, 1643 m, 1591 s, 1500 m,1285 vs, 1243 vs, ~1228 sh, 1159 s, 1028 vs, 720 m, 636 s,574 w, 518 m cm-1. – MS ((+)-MALDI-TOF): m/z (%) = 694.15(100) [M-CF3SO3]+, 1539.24 (8) [2 [CuL2L2?(OTf)2]-OTf]. -Anal. for C28H30CuF6N10O6S2 (844.27), water-free sample:calcd. C 39.83, H 3.58, N 16.59; S 7.59; found C 39.62, H 3.41,N 16.64, S 7.61.

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole (L)(0.0624 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL), 1:CH3CN (4 mL). After three days of hydrothermal treatment at 100 oC, the solution was slowly cooled to room temperature. After opening the kettle for the X-ray single crystal diffraction analysis of the yellow rod-like crystals. Yield: 35% (based on L)., 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104513260; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, Complex 2 was obtained by a similar method as described for 1 using copper(I) bromide (0.032 g,0.22 mmol) in place of copper(I) iodide. Colorless crystals of 2 were obtained (Yield: 0.191 g, 90.3%). 1HNMR (400 M, CDCl3) delta: 7.51-7.36 (m, 22H, m,p-Ph + H3,H4-PC6H4-), 7.33-7.27 (m, 4H, H5,H6-PC6H4-),7.12-7.00 (m, 12H, o-Ph). 13C NMR (100 M, CDCl3) delta: 147.87, 147.67, 140.24, 140.16, 134.31, 134.17, 133.45,131.80, 131.07, 130.71, 130.14, 129.90, 128.93, 128.69, 127.93, 127.26 (Ar-C). 31P NMR (240 M, CDCl3) delta:-9.70 (s). Anal. Calcd for C48H38Cu2Br2P2: C, 59.83; H, 3.97. Found: C, 59.88; H, 3.97. MS (MALDI-TOF): m/zCalcd for [M-2Br-Cu + C24H19P]+, 739.1745, found 739.1747.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Qi, Lei; Li, Qian; Hong, Xiao; Liu, Li; Zhong, Xin-Xin; Chen, Qiao; Li, Fa-Bao; Liu, Qian; Qin, Hai-Mei; Wong, Wai-Yeung; Journal of Coordination Chemistry; vol. 69; 24; (2016); p. 3692 – 3702;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Triphenyl methyl olmesartan

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

The copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate,cas is 34946-82-2, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole) (L)For 1: 1;L (0.0424 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL)CH3CN (4 mL), water heat 100 oC three days later slowly to room temperature.After the opening, there are yellow rod-like crystals suitable for X-ray single crystal diffraction analysis. Yield: 35% (based on L calculation).

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104557984; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7787-70-4

To a Schlenk flask containing deoxygenated absolute ethanol (50 mL) was added in the following order, the CuBr (0.19 mmol, 0.027 g) and the ligand (L) (0.38 mmol, 0.10 g). The resulting solution was stirred at room temperature for 14 h. The solution was concentrated and a white precipitate appeared. The solid obtained was filtered off, and washed with diethyl ether (5 mL) under anaerobic conditions and dried under vacuum. 5: (Yield. 82%). Anal. Calc. for C30H28CuN8O2 (596.14 amu): C, 53.30; H, 4.17; N, 16.57. Found: C, 53.56; H, 4.27; N, 16.46%. Conductivity (Omega-1 cm2 mol-1, 1.2 * 10-3 M in CH3OH): 90. IR: (KBr, cm-1): 3325 nu(O-H), 3075 nu(C-H)ar, 2941 nu(C-H)al, 1604-1566 (nu(C=C), nu(C=N))ar, 1464 (delta(C=C), delta(C=N))ar, 1098, 1086 delta(C-H)ar,ip, 765, 696 delta(C-H)ar,oop. 1H NMR: (DMSO-d6 solution, 250 MHz, 298 K) delta: 8.67/8.62 [1H/1H, d, 3J = 4.7 Hz, 3J = 4.8 Hz, Hortho/Hortho’], 8.52/8.08 [1H/1H, t, 3J = 7.3 Hz, 3J = 7.0 Hz, Hpara/Hpara’], 8.05/7.94 [1H/1H, d, 3J = 7.3 Hz, H4/H4′], 7.62 [1H, s, Hpz], 7.83/7.55 [1H/1H, m, Hmeta/Hmeta’], 4.54 [2H, t, 3J = 5.1 Hz, NCH2-CH2OH], 4.02 [2H, t, 3J = 5.1 Hz, NCH2-CH2OH], 4.02 [2H,t, 3J = 5.1 Hz, NCH2-CH2OH]. In this complex, the signal attributableto proton hydroxyl (OH) is not observed. 13C{1H] NMR:(DMSO-d6 solution, 63 MHz, 298 K) delta: 158.5/153.2 (Cortho/Cortho’),143.4/140.2 (Cpara/Cpara’), 129.3/127.2 (C4/C40), 126.1/123.4 (Cmeta/Cmeta’), 108.2 (Cpz), 64.5, (NCH2-CH2OH), 58.6 (NCH2-CH2OH)ppm. ESI(+)(m/z) (%) = 596 (100%) [Cu(L)2]+.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Guerrero, Miguel; Calvet, Teresa; Font-Bardia, Merce; Pons, Josefina; Polyhedron; vol. 119; (2016); p. 555 – 562;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 3-Piperazinobenzisothiazole hydrochloride

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

The copper-catalyst compound, cas is 34946-82-2 name is Copper(II) trifluoromethanesulfonate, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

A saturated solution of Cu(OTf)2 in n-butanol was addeddrop by drop to a solution of ligand L5 (40 mg, 0.16 mmol) in n-butanol (3 mL). Diethyl ether was placed on top of theblue butanol layer. After several weeks, deep blue crystalplatelets separated which were isolated by filtration withsuction, washed with a small volume of diethyl ether anddried at air. Yield: 64 mg (91); M.p. 271-275C. – IR (KBr): = 3322 br, 3154 w br, 3063 w, 1641 m, 1613 s, 1453 m, 1284vs, 1256 vs, 1225 vs, 1167 s, 1032 vs, 759 m, 700 s, 639 vs,576 m, 518 m cm-1. – Anal. for C28H30CuF6N10O6S2 (844.27):calcd. C 39.83, H 3.58, N 16.59; found C 40.07, H 3.74, N 16.16.

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Thiomorpholine 1,1-dioxide

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

The copper-catalyst compound, cas is 34946-82-2 name is Copper(II) trifluoromethanesulfonate, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

To a solution of 2.00 g (4.82 mmol) of the above ieri-butyl ester in dimethylsulfoxide (15 mL) is added 1.10 mL (10.1 mmol) of dimethylethylenediamine followed by 0.983 g (9.64 mmol) of sodium methanesulfinate, and 1.74 g (4.82 mmol) of copper (II) triflate. The mixture is heated at 130 C under argon for 2 hours. The mixture is cooled to room temperature and diluted with water causing a solid to precipitate from solution. The formed solid is collected by filtration, washed with water, and dried on the filter pad. The residue is purified by flash silica gel chromatography to give 1.03 g (52.0%) of (5′- methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-ylmethyl)-carbamic acid ie/ -butyl ester as a brown resin.

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Isothiazole

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

The copper-catalyst compound, cas is 34946-82-2 name is Copper(II) trifluoromethanesulfonate, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

Tert-leucine phosphinoazomethinylate potassium salt (100 mg, 0.23 mmol, 1 eq.) and copper bis-triflate Cu(OTf)2 (114 mg, 0.23 mmol, 1 eq.) are placed in a round-bottom flask. Anhydrous THF is then added (9 mL, 40 mL per mmol). The reaction mixture is agitated at room temperature for 1 hour. The solvent is evaporated and the product is dried under reduced pressure. A green powder is obtained (210 mg, 98%).

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Patent; Mauduit, Marc; Rix, Diane; Crevisy, Christophe; Wencel, Joanna; US2010/267956; (2010); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, General procedure: A mixture of CuCl (19.6mg, 0.2mmol) and dppb (89.3mg, 0.2mmol) with an excess of batho (66.5mg, 0.2mmol) were dissolved in CH2Cl2 (5mL) and 17 CH3OH (5mL) solution, stirred at room temperature for 6h. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature to yield yellow crystalline products.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Yu, Xiao; Fan, Weiwei; Wang, Guo; Lin, Sen; Li, Zhongfeng; Liu, Min; Yang, Yuping; Xin, Xiulan; Jin, Qionghua; Polyhedron; vol. 157; (2019); p. 301 – 309;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”