Brief introduction of 14172-91-9

14172-91-9 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) 3722750, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14172-91-9,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),as a common compound, the synthetic route is as follows.,14172-91-9

0.0157 g (0.088 mmol) of N-bromosuccinimide was added to a solution of 0.04 g (0.059 mmol) of Cuin 20 mL of l3, and the mixture was refluxed during 30 min. The operation was repeated three times,total amount of the added N-bromosuccinimide being0.047 g (0.26 mmol). After addition of the last portion of the reactant, the mixture was refluxed during 2 hand cooled to ambient; a solution of 0.07 g (0.44 mmol)of bromine in 5 mL of CHCl3 was then added atstirring. The resulting mixture was kept at 20 during about 24 h. Excess of bromine was removed by washing the reaction mixture with 15 mL of 20%aqueous solution of Na2S2O3. The organic layer was washed with water and dried over Na2SO4. The solvent was removed, and the residue was purified by chromatographyon alumina eluting with chloroform,followed by recrystallization from ethanol. Yield 0.055 g(72%, 0.0421 mmol).

14172-91-9 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) 3722750, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 578743-87-0

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,578743-87-0

Carbazole (83.6mg, 0.5mmol) and NaH (12 mg, 0.5 mmol) was mixed with THF and 15 ml, atroom temperature under a nitrogen atmosphere until bubbling ceased (15 min) and stirred.Chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] was added copper (I) ((IPr) CuCl)(243.8mg, 0.5mmol), the reaction mixture was stirred for one hour did. Then, the mixture wasfiltered through a plug of Celite (registered trademark) under an inert atmosphere, and thesolvent was removed by rotary evaporation. The product was obtained as a white solid (170mg,55%).

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

Reference£º
Patent; Universal Display Corporation; Mark, E. Thomson; Peter, I. Jurobitchi; Valentina, Krirowa; (66 pag.)JP2015/91800; (2015); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid. (0027) [CuBr(CNXyl)3] (1). Yield 530mg, 99%. Anal. Calc. for C27H27N3BrCu: C, 60.39; H, 5.07; N, 7.83. Found: C, 59.88; H, 4.89; N, 7.70%. HRESI+-MS, m/z: 325.0756 ([M-(XylNC)2]+, calcd 325.0760). IR spectrum in KBr, selected bands, cm-1: 2136 s nu(C?N). 1H NMR in CDCl3, delta: 2.49 (s, 6H, CH3), 7.11 (d, J 7.6Hz, 2H, aryl) 7.23 (d, J 7.6Hz, 1H, aryl). 13C{1H} NMR in CDCl3, delta: 18.95 (CH3), 127.92, 129.33, 135.49 (aryl).

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: A solution of cuprous chloride (5.8 mg, 0.058 mmol) in acetonitrile(10 mL) was added dropwise to a well stirred solution of 1(30 mg, 0.058 mmol) in dichloromethane (10 mL) at room temperaturewith constant stirring. After stirring for 6 h, the solvent wasremoved under reduced pressure and the residue obtained wasfurther washed with petroleum ether to give 4 as white solid product.Yield

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Bhat, Sajad A.; Mague, Joel T.; Balakrishna, Maravanji S.; Inorganica Chimica Acta; vol. 443; (2016); p. 243 – 250;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

In a round bottom flask, copper(I) bromide (0.3mmol, 0.043g) was dissolved in 5mL of degassed MeCN. Under continuous stirring and in a N2-atmosphere, a 2mL degassed NCMe solution of HC(3,5-Me2pz)3 (0.33mmol, 0.1g) was added dropwise. The mixture was stirred at room temperature for 3h, then its volume was reduced to ca. 2mL by evaporation. Hexane (10mL) was added, and the obtained precipitate was filtered off and recrystallized from a mixture if CH2Cl2 and hexane (1:1) to afford complexes 3 as off-white powder. [CuBr(Tpm*)] (3): Yield (108.9mg) 82%. Elemental analysis calcd (%) for C16H22BrCuN6: C 43.49, H 5.02, N 19.02; found: C 43.45, H 5.51, N 19.62. FTIR (KBr): nu (cm-1)=3397m, 2962m, 2925m, 1562s, 1455s, 1412s, 1383s, 1303s, 1239s, 1153 w, 1112 w, 1035m, 980m, 905m, 845s, 824m, 796m, 695s. Far IR (CsI): nu (cm-1)=216m nu(Cu-Br). 1H NMR (300MHz, DMSO-d6, delta): 7.83 (s, 1H, HC(3,5-Me2pz)3), 6.04 (s, 3H, 4-H-pz), 2.40, 2.22 (s, s, 9H, 9H, 3,5-Me). 13C{1H} NMR (300MHz, DMSO-d6, delta): 149.12 (3-Cquat-pz), 140.28 (5-Cquat-pz), 106.44 (4-C-pz), 70.67 (HC(3,5-Me2pz)3), 13.48,10.37 (3,5-Me). ESI(+)MS in MeCN (m/z assignment, % intensity): 204 ({[HC(3,5-Me2pz)3]Cu+MeCN}+, 100), 361 ({[HC(3,5-Me2pz)3]Cu}+, 26).

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Mahmoud, Abdallah G.; Martins, Luisa M.D.R.S.; Guedes da Silva, M. Fatima C.; Pombeiro, Armando J.L.; Inorganica Chimica Acta; vol. 483; (2018); p. 371 – 378;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about 34946-82-2

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

Copper(II) trifluoromethanesulfonate (5 g, 14 mmol) was dissolved in methanol (25 mL). Pyridine(12 mL, 149 mmol) was added dropwise (exothermic reaction was observed) and the reaction mixturewas stirred for 30 min. The mixture was left at ambient temperature for 1 h and thereafter in fridge (at5 C) overnight. The blue crystalline precipitate was filtered off, recrystallized from 20% Py in MeOHand dried under a stream of air affording the desired product [56]. Yield 8.5 g, 91%Appearance blue solidMolecular formula C22H20CuF6N4O6S2Molar mass 678.08042Anal.Calcd for C22H20CuF6N4O6S2: C, 38.97; H, 2.97; N, 8.26. Found: C,39.1 < 0.1; H, 3.16 0.09; N, 8.33 0.01. With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2 Reference£º
Article; Zarrad, Fadi; Zlatopolskiy, Boris D.; Krapf, Philipp; Zischler, Johannes; Neumaier, Bernd; Molecules; vol. 22; 12; (2017);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martin, Enrique; Lemus, Luis; Costamagna, Juan; Farias, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2014); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 34946-82-2

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 6.90 g (18.5 mmol) of 5′-bromo-3′-nitro-3,4,5,6-tetrahydro-2H- [l,2′]bipyridinyl-4-yl)-acetic acid in dimethylsulfoxide (100 mL) is added 4.5 mL (41 mmol) of dimethylethylenediamine followed by 4.0 g (39 mmol) of sodiummethanesulfinate and 5.5 g (19 mmol) of copper (II) triflate. The mixture is heated to 130 C for lhour then cooled to room temperature. The mixture is diluted with water and stirred overnight during which time a solid precipitates from solution. The yellow solid is collected by filtration, washed with water and dried on the filter pad to provide 5.00 g (72.6%) of (5′-methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-yl)- acetic acid ethyl ester.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about Copper(II) trifluoromethanesulfonate

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

2-Phenylpyridine 1a (71 muL, 0.5 mmol),1,2-diphenylethylene 2a (89.7 mg, 0.5 mmol),{[Cp * RhCl2] 2} (3.1 mg, 1 mol%),AgOTf (5.1 mg, 0.02 mmol),Cu (OTf) 2 (180.8 mg, 0.5 mmol)Was added to 2.0 mL of methanol, under argon (1 atm)120 oC reaction after 22 hours to stop the reaction,Diatomaceous earth filter, dichloromethane washing, collecting organic phase evaporated solvent,Methanol / ether / petroleum ether (1: 4: 100) to give the pure isoquinoline salt derivative 3aa. The product was a white solid in 91%

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Patent; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Huang, Hanmin; Zhang, Guoyang; (21 pag.)CN104177357; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

Compound 2 (23mg, 0.05mmol) in dichloromethane (2mL) was slowly added on a solution of copper bromide (7.2mg, 0.05mmol) in acetonitrile (2mL) at-60C. The orange-red solution resulting from complete diffusion was slowly evaporated at r.t. to afford compound 6 (quantitative yield) as colorless crystals suitable for an X-ray diffraction analysis. Mp=93C. 1H NMR (CDCl3, 300MHz): delta 5.21 (s, 4H, =CH2), 4.30-3.95 (m, 8H, CH2-C=), 4.00-2.35 (m, 24H). Br2C20Cu2H36O4S4 (755.56): calcd C 31.79, H, 4.80; found: C 31.09, H, 4.22.

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Carel, Guillaume; Madec, David; Saponar, Alina; Saffon, Nathalie; Nemes, Gabriela; Rima, Ghassoub; Castel, Annie; Journal of Organometallic Chemistry; vol. 755; (2014); p. 72 – 77;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”