Reference of 1111-67-7, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1111-67-7, Cuprous thiocyanate, introducing its new discovery.
Aqueous phase self-assembly of nanoscale p-n heterojunctions
Methods, adapted from photographic microcrystal growth technology, are used to assemble organized ternary organo-inorganic, nanoscale heterostructures. The resulting ensemble consists of free-standing, oriented AgBr microcrystals, upon the a??111a?? surfaces of which is self-assembled a monolayer of spectrally sensitizing dye, and upon the corners of the hexagonally shaped AgBr substrates are epitaxially grown nanoscale p-type CuSCN nodules. EPR spectroscopy and photophysical measurements are employed to show that the ensembles are capable of separating photogenerated geminate pairs. One of the remarkable features of this approach is that it utilizes the ultrafast kinetics of aqueous precipitation and, thus, allows the assembly of heterostructures at rates of 1010/sA¡¤L, or greater.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”