In homogeneous catalysis, the catalyst is in the same phase as the reactant. The number of collisions between reactants and catalyst is at a maximum.In a patent, 1111-67-7, name is Cuprous thiocyanate, introducing its new discovery. Safety of Cuprous thiocyanate
Scalable synthesis of djurleite copper sulphide (Cu1.94S) hexagonal nanoplates from a single precursor copper thiocyanate and their photothermal properties
Copper sulphide materials have received great attention due to their low bandgap semiconducting properties. As compared to other chalcogenides, few synthetic examples have been reported, and a simple and scalable synthetic method for preparing size- and shape-controlled copper sulphide nanoparticles is required for potential wide application of these materials. Herein, a facile one pot scalable synthetic route has been developed for preparing highly monodisperse djurleite Cu1.94S hexagonal nanoplates. The thermal decomposition of a single precursor CuSCN was found suitable for preparing a large quantity of highly monodisperse Cu1.94S hexagonal nanoplates; a multi-gram scale product could be obtained in a single step. Under the synthetic scheme developed, the width of Cu1.94S nanoplates with a thickness of ~ 10 nm could be easily tuned from 70 nm to 130 nm. Their optical properties were investigated and their photothermal effect was also studied by photothermal optical coherence reflectometry (PT OCR). Cu1.94S hexagonal nanoplates showed a considerable photothermal effect, which was found to depend on the nanoparticle concentration.
We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 1111-67-7, and how the biochemistry of the body works.Safety of Cuprous thiocyanate
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”