Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. Recommanded Product: 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate
Novel conductive radical cation salts based on methylenediselenotetraselenafulvalene (MDSe-TSF): A sign of superconductivity in kappa-(MDSe-TSF)2Br below 4 K
Seven conductive radical cation salts based on MDSe-TSF (methylenediselenotetraselenafulvalene) have been synthesized by electrocrystallization in the presence of Cl-, Br-, I3-, I2Br-, PF6-, ClO4-, and Cu(NCS)2- counter anions. The crystal appearances of these salts fairly depend on the anions employed. X-ray crystallographic analyses have revealed that the PF6 and ClO4 salts in the shape of brown thin plates adopt the theta-type structures characterized by the herringbone arrangement of donor stacks, whereas the Cl and Br salts in the shape of black thick plates favor the kappa-type structures with the orthogonal arrangement of donor dimers. Regardless of different crystal appearances or crystal packing patterns, all these salts show high conductivity (> 102 S cm-1) at room temperature and retain metallic properties down to 4.2 K. Of them, the Br salt shows a weak but distinct diamagnetic shielding signal below 4 K in the dc magnetization measurement under zero-field-cooled (ZFC) condition, suggesting a sign of superconductivity. The band calculations of both PF6 and Br salts demonstrate closed Fermi surfaces indicative of two-dimensional molecular conductors.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Recommanded Product: 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”