Synthetic Route of 13395-16-9, One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time.Mentioned the application of 13395-16-9.
Synthesis of CuO and Cu2O nano/microparticles from a single precursor: Effect of temperature on CuO/Cu2O formation and morphology dependent nitroarene reduction
CuO and Cu2O nano/microparticles with pure phases have been synthesized from the same precursor by a hydrothermal method. Hydrothermal heating of Cu(OAc)2 produced CuO at 125 C whereas pure Cu2O was obtained at 175 C. Heating at 150 C gave a CuO/Cu2O mixture. In contrast, Cu(acac)2 produced only Cu2O at all three temperatures. The pure phases of Cu2O and CuO nano/microparticles were confirmed by PXRD and XPS characterization. The mechanistic studies indicate that decomposition of the organic anion/ligand of the Cu-precursor played a key role in the formation of CuO/Cu2O nano/microparticles from Cu(OAc)2/Cu(acac)2. FE-SEM studies revealed the formation of CuO with a microsphere morphology (125 C) and a micro-cup for Cu2O at 175 C. Nanowires and micron-sized elliptical cylinders were observed for Cu2O synthesized from Cu(acac)2. However, calcination of Cu(OAc)2, Cu(acac)2 and Cu(NO3)2 at 500 C produced crystalline CuO nano/microparticles with various sizes and morphologies. Further, CuO nano/microparticles investigated for industrially important aromatic nitro to amine conversion showed morphology dependent nitro group reduction. Smaller spherical CuO nano/microparticles obtained from Cu(acac)2 exhibited the highest catalytic activity. The reusability studies indicate that CuO nano/microparticles can be used for up to six cycles. Thus we have presented a simple method to synthesize Cu2O or CuO from the same precursor and demonstrated the morphology dependent catalytic activity of CuO nano/microparticles.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 13395-16-9. In my other articles, you can also check out more blogs about 13395-16-9
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”