Can You Really Do Chemisty Experiments About C10H12O2

Interested yet? Read on for other articles about 2568-25-4, you can contact me at any time and look forward to more communication. Formula: C10H12O2.

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. 2568-25-4, Name is Benzaldehyde Propylene Glycol Acetal, SMILES is CC1OC(C2=CC=CC=C2)OC1, in an article , author is Chen, Xingyu, once mentioned of 2568-25-4, Formula: C10H12O2.

Nanoconical active structures prepared by anodization and deoxidation of molybdenum foil and their activity origin

To improve the surface activity of molybdenum (Mo), a method combining anodizing and deoxidizing annealing in a H-2 atmosphere has been proposed to prepare nanocone-structured active Mo foils (NCSAMFs) in this paper. The morphology, composition and catalytic properties of the as-prepared NCSAMF were characterized by field-emission scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS) and electrochemical measurements. Nanoconical structures were generated under a voltage of 20 V for 15 min in the optimized electrolyte, and all the oxygen atoms in the nanoconical structure layer were removed under deoxidation at 650 degrees C for 3 h in a H-2 atmosphere while retaining the nanoconical structure and activity. Compared with the Mo foils treated under different conditions, the NCSAMFs exhibit superior hydrogen evolution reaction (HER) activity with a low onset overpotential of 123 mV and a Tafel slope of 96 mV dec(-1), indicating that the NCSAMFs possess high activity and outstanding long-term stability in acidic media. Therefore, the NCSAMFs prepared in this paper are promising transition metal HER electrocatalysts and serve as active matrix materials for Mo-based materials. In addition, the surface energies of the NCSAMF and the Mo foils without nanotreatment were calculated at the atomic and mesoscopic scales, respectively, to provide more insights into the origin of the studied process, and the calculation results demonstrate that the high activity of NCSAMFs is mainly derived from the increase in Mo crystal surface area with high surface energy caused by the nanotreatment and the corresponding increase in the amount of active sites. (C) 2020 Elsevier B.V. All rights reserved.

Interested yet? Read on for other articles about 2568-25-4, you can contact me at any time and look forward to more communication. Formula: C10H12O2.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Top Picks: new discover of Benzaldehyde Propylene Glycol Acetal

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 2568-25-4, Safety of Benzaldehyde Propylene Glycol Acetal.

In an article, author is Hu, Jun, once mentioned the application of 2568-25-4, Name is Benzaldehyde Propylene Glycol Acetal, molecular formula is C10H12O2, molecular weight is 164.2, MDL number is MFCD00059732, category is copper-catalyst. Now introduce a scientific discovery about this category, Safety of Benzaldehyde Propylene Glycol Acetal.

In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation

Cu-based catalysts are commonly used in industry for methanol synthesis. In this study, supported catalysts of 5 wt% Cu/Al2O3 and 5 wt% Cu/ZnO were prepared, and their surface characteristics during H-2 reduction and CO2 hydrogenation were investigated using in situ Fourier transform infrared spectroscopy (FTIR), ex situ X-ray photoelectron spectroscopy, and high sensitivity low energy ion scattering spectroscopy. During the H-2 reduction and CO2 hydrogenation processes, it was found that Al2O3 can stabilize Cu+. In situ FTIR spectra indicated that the 5 wt% Cu/Al2O3 can adsorb large amounts of bicarbonate and carbonate species, which then convert into formate during CO2 hydrogenation. For the 5 wt% Cu/ZnO, it was found that Cu nanoparticles were gradually covered by a highly defective ZnOx overlayer during H-2 reduction, which can effectively dissociate H-2. During CO2 hydrogenation, the adsorbed bicarbonate or carbonate species can convert into formate and then into a methoxy species. Using these surface sensitive methods, a more in-depth understanding of the synergistic effect among the Cu, Al2O3, and ZnO components of Cu-based catalysts was achieved. (C) 2021, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 2568-25-4, Safety of Benzaldehyde Propylene Glycol Acetal.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 14347-78-5

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 14347-78-5. Quality Control of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, Quality Control of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, belongs to copper-catalyst compound. In a article, author is Khan, Zaheer, introduce new discover of the category.

Synthesis of ternary nanoparticles using the complexation-reduction method and their catalytic activities for hydrogen generation from formic acid

A complex-reduction method was used for the synthesis of glycine-capped copper nanoparticles (Gly-CuNPs). Glycine-Cu2+ was prepared at room temperature, and the resulting complex was treated with NaBH4. Gly-Cu/Ag and Gly-Cu/Ag/MnO2 were prepared by using the stepwise metal displacement plating method. Gly-Cu, Gly-Cu/ Ag and Gly-Cu/Ag/MnO2 were employed as catalysts for hydrogen generation from the decomposition of formic acid. The alkaline barium hydroxide solution was employed to trap CO2 formation, and pseudo-first-order rate constants were calculated by using the k(obs) = 2.303/t log(A(alpha)-A(0)/A(alpha)-A(t)) relation. Hydrogen generation followed fractional order kinetics with formic acid, and various kinetic parameters were calculated for various concentrations of promoter (sodium format), catalyst and temperature. The catalytic activity was found to increase with an increasing number of incorporated metals, and the order of reactivity was as follows: Gly-Cu/Ag/ MnO2 > Gly-Cu/Ag > Gly-Cu. For Gly-Cu/Ag/MnO2, the values of activation parameters (E-a = 56 kJ/mol, Delta H-# = 53 kJ/mol, Delta S-# = – 68 J/K/mol) were determined with the Arrhenius and Eyring equations, which show higher catalytic efficiency than that of Gly-Cu/Ag (Ea = 69 kJ/mol, Delta H-# = 66 kJ/mol, Delta S-# = – 25 J/K/mol) due to the synergistic effect and strong interactions between the three metals. The catalytic stability and recyclability were excellent for five consecutive cycles, but the stability and recyclability decreased due to the higher reactivity of MnO2 NPs. (C) 2020 Elsevier B.V. All rights reserved.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 14347-78-5. Quality Control of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The Absolute Best Science Experiment for (R)-4-Methyl-1,3-dioxolan-2-one

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 16606-55-6, Recommanded Product: (R)-4-Methyl-1,3-dioxolan-2-one.

In an article, author is Dutra de Andrade, Julyanna Candido, once mentioned the application of 16606-55-6, Name is (R)-4-Methyl-1,3-dioxolan-2-one, molecular formula is C4H6O3, molecular weight is 102.09, MDL number is MFCD00798265, category is copper-catalyst. Now introduce a scientific discovery about this category, Recommanded Product: (R)-4-Methyl-1,3-dioxolan-2-one.

Copper and copper-manganese 1D coordination polymers: Synthesis optimization, crystal structure and preliminary studies as catalysts for Baylis-Hillman reactions

This work reports the influence of experimental parameters (pH and counter-ion) in the synthesis of the 1D coordination polymer [Cu(IDA)(H2O)(2)](n). (IDA = iminodiacetate), named here Cu-IDA. Copper-manganese bimetallic coordination polymers were also obtained by isomorphic replacement into Cu-IDA structure, with different molar ratio of Cu2+ and Mn2+ ions, denoted here as Cu/Mn-IDA (0.9/0.1; 0.7/0.3 and 0.5/0.5). New coordination polymers are isostructural to Cu-IDA and amounts of manganese atoms inserted into crystalline structure were evaluated by single-crystal X-ray diffraction and Rietveld refinement. All coordination polymers obtained were also characterized by infrared absorption spectroscopy and thermogravimetric analysis. Homometallic and bimetallic compounds were evaluated as catalysts for Baylis-Hillman reaction with yields and reaction times comparable or superior to those in the literature. Compounds containing manganese cations shows higher catalytic performance, especially Cu/Mn-IDA (0.9/0.1) with yield 91% in 5 h of reaction. Results also indicate an important role played by the metallic centre in the catalytic mechanism.

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 16606-55-6, Recommanded Product: (R)-4-Methyl-1,3-dioxolan-2-one.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Discover of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 14347-78-5, in my other articles. HPLC of Formula: C6H12O3.

Chemistry is an experimental science, HPLC of Formula: C6H12O3, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3, belongs to copper-catalyst compound. In a document, author is An, Yanyan.

Hollow structured copper-loaded self-floating catalyst in sulfite-induced oxidation of arsenic(III) at neutral pH: Kinetics and mechanisms investigation

In heterogeneous reactions, efficient solid-liquid separation of catalyst from water after oxidation is a significant approach to reduce possible secondary pollution of aquatic environments. In this work, a hollow-structured self-floating copper-loaded catalyst (HSM-N-Cu) was fabricated using copper ammonia complexes and hollow glass microsphere as the copper source and supporter, respectively. The SEM, TEM, BET, XPS, and XRD characterization results suggested ideal specific surface area and stability of HSM-N-Cu. The prepared HSM-N-Cu in conjunction with sulfite have been successfully applied for As(III) oxidation in near-neutral conditions. In general, HSM-N-Cu effectively activating S(IV) process involved Cu(II)/Cu(I) conversion and chain reactions of oxysulfur radicals, where the S(IV) acted as a complexing ligand to Cu(II) surface and precursor of oxysulfur radicals. SO4 center dot- was verified as the dominant contributor to As(III) oxidation, the apparent reaction rate constant (k(obs)) for SO4 center dot- generation was 1.81 +/- 0.12 M-1 s(-1), and the reaction rate constant (k(12)) of SO5 center dot- + As(III) -> As (IV) + SO52- was first calculated as 2.6 x 10(6) M-1 s(-1) by kinetic study. The apparent activation energy (E-a) was 48.6 +/- 0.1 kJ mol(-1) at 100 mg L-1 HSM-N-Cu. Additionally, self-floating HSM-N-Cu could be easily separated, and its great stability was proven after six-cycle test. Furthermore, the HSM-N-Cu/S(IV) system can work effectively in broad range of geochemical conditions. In summary, the established process is feasible for remediation of As(III)-contaminated water, the collection of self-floating catalysts by surface separation from water provides a new idea to reduce secondary pollution of water by catalysts.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 14347-78-5, in my other articles. HPLC of Formula: C6H12O3.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Archives for Chemistry Experiments of 18742-02-4

Reference of 18742-02-4, Because enzymes can increase reaction rates by enormous factors and tend to be very specific, typically producing only a single product in quantitative yield, they are the focus of active research.you can also check out more blogs about 18742-02-4.

Reference of 18742-02-4, As an important bridge between the micro and macro material world, chemistry is one of the main methods and means for humans to understand and transform the material world. 18742-02-4, Name is 2-(2-Bromoethyl)-1,3-dioxolane, SMILES is C(C1OCCO1)CBr, belongs to copper-catalyst compound. In a article, author is Cukierman, Daphne S., introduce new discover of the category.

Mildness in preparative conditions directly affects the otherwise straightforward syntheses outcome of Schiff-base isoniazid derivatives: Aroylhydrazones and their solvolysis-related dihydrazones

Aroylhydrazones are versatile compounds with a series of applications, from biological to technological spheres. The simplicity of their preparation allows for a great chemical variability and synthetic manageability. However, the process can be not as straightforward as one would imagine. Some parameters such as specific reactants, the amount of acid employed as catalyst and reaction temperature can have a direct impact on the obtained product. In the present work, we describe two series of novel isoniazid-derived compounds prepared from a pair of different aldehyde precursors, as well as the solvolysis, under harsh synthetic conditions, of the initially formed aroylhydrazones, leading to unexpected dihydrazones. All compounds were unequivocally characterized in solution using 1D and 2D NMR experiments in DMSO-d(6) and, in the solid-state, by other classic techniques. System I is composed by 2-(1H-pyrazol-1-yl)benzaldehyde and its hydrazone derivatives, while system II comprises 2(4-metoxyphenoxy)benzaldehyde and its related Schiff-base products. The first aldehyde was obtained for the first time via the copper-catalyzed Ullmann C-N coupling between 2-bromobenzaldehyde and pyrazole. Single crystals of its aroylhydrazone and dihydrazone derivatives were isolated and thoroughly characterized, including Hirshfeld surfaces and energy frameworks studies. Finally, we describe an NMR and theoretically-based proposed reaction pathway for the unexpected formation of the dihydrazones involving the solvolysis of the initially formed isonicotinoyl hydrazone followed by attack to a second free aldehyde molecule. (C) 2020 Elsevier B.V. All rights reserved.

Reference of 18742-02-4, Because enzymes can increase reaction rates by enormous factors and tend to be very specific, typically producing only a single product in quantitative yield, they are the focus of active research.you can also check out more blogs about 18742-02-4.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some scientific research about 18742-02-4

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 18742-02-4, in my other articles. Application In Synthesis of 2-(2-Bromoethyl)-1,3-dioxolane.

Chemistry can be defined as the study of matter and the changes it undergoes. You¡¯ll sometimes hear it called the central science because it is the connection between physics and all the other sciences, starting with biology. 18742-02-4, Name is 2-(2-Bromoethyl)-1,3-dioxolane, molecular formula is , belongs to copper-catalyst compound. In a document, author is Jiang, Wei, Application In Synthesis of 2-(2-Bromoethyl)-1,3-dioxolane.

CuSO4 nanoparticles loaded onto poly (toluenesulfonic acid-formaldehyde)/polyethyleneimine composites: An efficient retrievable catalyst for A(3)/decarboxylative A(3) reactions

Using polymeric composite incorporated transition metal nanoparticles to promote various organic reactions has been found as one of the most powerful strategies in organic synthesis. In this paper, CuSO4 nanoparticles (CuSO4 NPs) anchored on the surface of polymeric composites comprising of water-insoluble acidic poly (toluenesulfonic acid-formaldehyde) (PTSAF) and water-soluble basic polyethyleneimine (PEI) to form the desired PEI/PTSAF-supported CuSO4 NPs catalyst (CuSO(4)NPs@PEI/PTSAF) have been fabricated. Characterization of the as-synthesized catalyst by inductively coupled plasma (ICP), Fourier transform infrared (FTIR), X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and elemental mapping analysis, transmission electron microscopy (TEM), and thermogravity analysis (TGA) demonstrated successful immobilization of the CuSO4 NPs on the PEI/PTSAF composite. This novel catalyst was highly active in the one-pot A(3) and decarboxylative A(3) coupling reactions toward generating corresponding propargylamines in good to excellent yields under solvent-free reaction. The nature of the well distribution of CuSO4 NPs coordinated with PEI ligand in the CuSO(4)NPs@PEI/PTSAF composite leads to superior catalytic activity. The present methodology offers several advantages such as high catalytic activity, good to excellent yields, short reaction times, simple operations, compatibility of broad scope of substrates, and environmental friendliness. More importantly, the catalyst can be easily recovered from the reaction mixture by a simple filtration and still exhibits remarkable reusability with only marginal loss of its performance after five consecutive runs.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 18742-02-4, in my other articles. Application In Synthesis of 2-(2-Bromoethyl)-1,3-dioxolane.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

What I Wish Everyone Knew About C4H6O3

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 16606-55-6, in my other articles. SDS of cas: 16606-55-6.

Chemistry is an experimental science, SDS of cas: 16606-55-6, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 16606-55-6, Name is (R)-4-Methyl-1,3-dioxolan-2-one, molecular formula is C4H6O3, belongs to copper-catalyst compound. In a document, author is Kojima, Yusuke.

Bromination of Carbon and Formation of PBDD/Fs by Copper Bromide in Oxidative Thermal Process

Brominated aromatic compounds are unintentionally generated during various thermal processes, including municipal solid waste incineration, electric-waste open burning, and secondary copper smelting. Copper (Cu) plays an important role in the formation of brominated aromatic compounds. In the present study, the thermochemical behaviors of Cu and Br in model samples, including copper bromide (CuBr2) and activated carbon, were studied using in situ X-ray absorption near-edge structure (XANES) and thermogravimetry. Quantification of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) was also conducted by gas chromatograph-high resolution mass spectrometer. Three key reactions were identified: (i) the reduction of CuBr2 to CuBr (room temperature to 300 degrees C), (ii) the generation of Br bonded with aromatic carbon (150-350 degrees C), and (iii) the oxidation of copper (>350 degrees C). Maximum amounts of PBDD/Fs were found in residual solid phase after heating at 300 degrees C. The analytical results indicated the direct bromination of aromatic carbon by the debromination of copper bromides (I, II) and that CuBr and CuO acted as catalysts in the oxidation of the carbon matrix. The bromination mechanisms revealed in this study are essential to the de novo formation of PBDD/Fs and other brominated aromatic compounds.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 16606-55-6, in my other articles. SDS of cas: 16606-55-6.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 2568-25-4

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 2568-25-4. Formula: C10H12O2.

Chemistry is the experimental science by definition. We want to make observations to prove hypothesis. For this purpose, we perform experiments in the lab. , Formula: C10H12O2, 2568-25-4, Name is Benzaldehyde Propylene Glycol Acetal, molecular formula is C10H12O2, belongs to copper-catalyst compound. In a document, author is Islam, Md Sayedul, introduce the new discover.

A highly effective green catalyst Ni/Cu bimetallic nanoparticles supported by dendritic ligand for chemoselective oxidation and reduction reaction

The highly active Ni/Cu bimetallic nanoparticles (NPs) of the different molar ratios of Ni and Cu (1:1, 1:3, 3:1) assisted by dendritic ligand 2,4,6-Tris (di-4-chlorobenzamido)-1,3-diazine were synthesized successfully confirmed by Scanning Electron Microscopy (SEM), Electron Diffraction X-ray (EDX), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM) analysis. These NPs were studied as a heterogeneous catalyst for the chemoselective oxidation of alcohol to the corresponding aldehyde at 30 min and chemoselective reduction of aromatic nitro substituents to the corresponding amino substituents at 20 min, while the Ni/Cu (3:1) NPs were found to be the most effective among other Ni/Cu (1:1) and Ni/Cu (1:3) NPs at room temperature under mild conditions. The Ni/Cu (3:1) NPs can be recycled for at least five successive runs with no perceptible decrease in catalytic activity. Graphic abstract

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 2568-25-4. Formula: C10H12O2.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

More research is needed about 16606-55-6

Synthetic Route of 16606-55-6, Each elementary reaction can be described in terms of its molecularity, the number of molecules that collide in that step. The slowest step in a reaction mechanism is the rate-determining step.you can also check out more blogs about 16606-55-6.

Synthetic Route of 16606-55-6, Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. 16606-55-6, Name is (R)-4-Methyl-1,3-dioxolan-2-one, SMILES is O=C1OC[C@@H](C)O1, belongs to copper-catalyst compound. In a article, author is Hussain, Sajid, introduce new discover of the category.

Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review

Innovations in water technology are needed to solve challenges of climate change, resource shortages, emerging contaminants, urbanization, sustainable development and demographic changes. In particular, conventional techniques of wastewater treatment are limited by the presence of poorly biodegradable organic matter. Alternatively, recent Fenton, Fenton-like and hybrid processes appear successful for cleaning of different types of liquid wastewaters. Here, we review the application of metallic catalyst-H2O2 systems in the heterogeneous Fenton process. Each metallic catalyst-H2O2 system has unique redox properties due to metal oxidation state. Solution pH is a major influencing factor. Catalysts made of iron and cerium form stable complexes with oxidation products and H2O2, thus resulting in reduced activities. Copper forms transitory complexes with oxidation products, but copper catalytic activity is restored during the reaction. Silver and manganese do not form complexes. The catalyst performance for degradation and mineralization decreases in the order: manganese, copper, iron, silver, cerium, yet the easiness of practical application decreases in the order: copper, manganese, iron, silver, cerium.

Synthetic Route of 16606-55-6, Each elementary reaction can be described in terms of its molecularity, the number of molecules that collide in that step. The slowest step in a reaction mechanism is the rate-determining step.you can also check out more blogs about 16606-55-6.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”