Because a catalyst decreases the height of the energy barrier, Application In Synthesis of Cuprous thiocyanate, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.Application In Synthesis of Cuprous thiocyanate, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a article,once mentioned of Application In Synthesis of Cuprous thiocyanate
Reactions of (NH4)2MS4 or (NH4)MOS3 (M = Mo, W) with CuSCN and the closo carborane diphosphine 1,2-(PPh2)2-1,2-C2B10H10 in CH2Cl2 yielded five heterobimetallic trinuclear Mo(W)-Cu-S clusters with the formula Cu2MS4L2 (M = Mo(1), W(3), L = 1,2-(PPh2)2-1,2-C2B10H10), Cu2MoS4L2 · CH2Cl2 (2) and Cu2MOS3L2 (M = Mo(4),W(5)). All the clusters have been characterized by elemental analysis, FT-IR, UV/Visible, 1H and 13C NMR spectroscopy and X-ray structure determination. X-ray crystal structure analysis showed that the metal skeleton of these clusters could be classified into two types. With (NH4)2MS4 (M = Mo, W), the three metal atoms (two Cu atoms and one M atom (M = Mo, W)) are almost in a linear conformation, while with (NH4)2MOS3 the conformation of the heterobimetallic trinuclear cluster core was a butterfly-shaped (or referenced as defective cubane-like with two corners missing). The coordination sphere of the metal atoms in all the clusters, either for Cu or M, should be described as a distorted tetrahedron. For each cluster, the closo carborane diphosphine ligand 1,2-(PPh2)2-1,2-C2B10H10 was introduced into the Cu2MS4 or Cu2MOS3 cluster cores and coordinated bidentately through the P atoms to Cu(I), and this resulted in a stable five-member chelating ring between the bis-diphosphine ligand and the metal.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application In Synthesis of Cuprous thiocyanate. In my other articles, you can also check out more blogs about 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”