Related Products of 13395-16-9, In homogeneous catalysis, catalysts are in the same phase as the reactants. Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products.In an article,authors is Vinod Kumar, once mentioned the application of Related Products of 13395-16-9, Name is Bis(acetylacetone)copper, is a conventional compound.
CuO and Cu2O nano/microparticles with pure phases have been synthesized from the same precursor by a hydrothermal method. Hydrothermal heating of Cu(OAc)2 produced CuO at 125 C whereas pure Cu2O was obtained at 175 C. Heating at 150 C gave a CuO/Cu2O mixture. In contrast, Cu(acac)2 produced only Cu2O at all three temperatures. The pure phases of Cu2O and CuO nano/microparticles were confirmed by PXRD and XPS characterization. The mechanistic studies indicate that decomposition of the organic anion/ligand of the Cu-precursor played a key role in the formation of CuO/Cu2O nano/microparticles from Cu(OAc)2/Cu(acac)2. FE-SEM studies revealed the formation of CuO with a microsphere morphology (125 C) and a micro-cup for Cu2O at 175 C. Nanowires and micron-sized elliptical cylinders were observed for Cu2O synthesized from Cu(acac)2. However, calcination of Cu(OAc)2, Cu(acac)2 and Cu(NO3)2 at 500 C produced crystalline CuO nano/microparticles with various sizes and morphologies. Further, CuO nano/microparticles investigated for industrially important aromatic nitro to amine conversion showed morphology dependent nitro group reduction. Smaller spherical CuO nano/microparticles obtained from Cu(acac)2 exhibited the highest catalytic activity. The reusability studies indicate that CuO nano/microparticles can be used for up to six cycles. Thus we have presented a simple method to synthesize Cu2O or CuO from the same precursor and demonstrated the morphology dependent catalytic activity of CuO nano/microparticles.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Related Products of 13395-16-9. In my other articles, you can also check out more blogs about 13395-16-9
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”