Quality Control of Cuprous thiocyanate, The dynamic chemical diversity of the numerous elements, ions and molecules that constitute the basis of life provides wide challenges and opportunities for research. In an article, once mentioned the application of 1111-67-7, Name is Cuprous thiocyanate, is a conventional compound.
Single crystal X-ray structural characterizations are recorded for a wide range of adducts of the form MX:dppx (1:1)(n), M = silver(I) (predominantly), copper(I), X = simple (pseudo-) halide or oxy-anion (the latter spanning, where accessible, perchlorate, nitrate, carboxylate – a range of increasing basicity), dppx=bis(diphenylphosphino)alkane, Ph2P(CH 2)xPPh2, x = 3-6. Adducts are defined of two binuclear forms: (i) [LM(mu-X)2L], with each ligand chelating a single metal atom, and (ii) [M(mu-X)2(mu-(P-L-P?)) 2M?] where both ligands L and halides bridge the two metal atoms; a few adducts are defined as polymers, the ligands connecting M(mu-X)2M? kernels, this motif persisting in all forms. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).
Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about Related Products of 52409-22-0!, Quality Control of Cuprous thiocyanate
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”