Chemical research careers are more diverse than they might first appear, as there are many different reasons to conduct research and many possible environments. Quality Control of Bis(acetylacetone)copper. Introducing a new discovery about 13395-16-9, Name is Bis(acetylacetone)copper, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.
In this work, uniformly sized Cu2ZnSnS4 (CZTS) nanoparticles with easy control of chemical composition were synthesized and printable ink containing CZTS nanoparticles was prepared for low-cost solar cell applications. In addition, we studied the effects of synthesis conditions, such as reaction temperature and time, on properties of the CZTS nanoparticles. For CZTS nanoparticles synthesis process, the reactants were mixed as the 2:1:1:4 molar ratios. The reaction temperature and time was varied from 220C to 320C and from 3 hours to 5 hours, respectively. The crystal structure and morphology of CZTS nanoparticles prepared under the various conditions were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDS) was used for compositional analysis of the CZTS nanoparticles.
Interested yet? This just the tip of the iceberg, You can reading other blog about 13395-16-9. Quality Control of Bis(acetylacetone)copper
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”