The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: (S)-2-Bromosuccinic acid( cas:20859-23-8 ) is researched.Application of 20859-23-8.Robinson, James E.; Brimble, Margaret A. published the article 《Synthesis of the anti-Helicobacter pylori agent (+)-spirolaxine methyl ether and the unnatural (2”S)-diastereomer》 about this compound( cas:20859-23-8 ) in Organic & Biomolecular Chemistry. Keywords: asym synthesis spirolaxine methyl ether Julia Kocienski olefination lactonization; spirocyclization asym synthesis methylspirolaxine mol structure absolute configuration. Let’s learn more about this compound (cas:20859-23-8).
The first enantioselective synthesis of the anti-Heliocbacter pylori agent (+)-spirolaxine Me ether (I) has been carried out in a convergent fashion establishing that the absolute stereochem. of the natural product is in fact (3R, 2”R, 5”R, 7”R) after initial synthesis of the unnatural (2”S)-diastereomer. The key step in the synthesis of (+)-spirolaxine Me ether involved a heterocycle-activated Julia-Kocienski olefination between benzothiazole-based spiroacetal sulfone II and phthalide aldehyde. (2”R, 5”S, 7”S)-spiroacetal sulfone II was prepared via cyclization of a protected dihydroxyketone, which in turn was derived from the coupling of the acetylide derived from a (R)-acetylene with phthalide aldehyde. Phthalide aldehyde was prepared via intramol. acylation of a bromocarbamate III, which was available via titanium tetrafluoride-(+)-BINOL-mediated allylation of 3,5-dimethoxybenzaldehyde. Union of the sulfone II and phthalide aldehyde fragments successfully completed the enantioselective synthesis of I. The synthesis of the unnatural (3R, 2”S, 5”R, 7”R)-diastereomer of I was also undertaken in a similar manner by union of phthalide aldehyde with (2”S, 5”S, 7”S)-spiroacetal sulfone derived from the (S)-acetylene.
As far as I know, this compound(20859-23-8)Application of 20859-23-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”