Discovery of Cuprous thiocyanate

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Electric Literature of 1111-67-7, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a article£¬once mentioned of 1111-67-7

Iron Complexes of N-Substituted Thiosalicylideneimines. Part 1. Synthesis and Reactions with Oxygen and Carbon Monoxide

Iron(II) complexes with N-substituted bidentate and tetradentate thiosalicylideneimines can be prepared by the reaction of bis(thiosalicylaldehydato)iron(II) with appropriate primary amines.The bidentate compounds show S = 2 spin states while a number of the tetradentate compounds have the unusual S = 1 state.The tetradentate complexes react with CO to form monocarbonyl complexes and with O2 to form FeIII mu-oxo-bridged derivatives.Some evidence is presented to support the preliminary formation at low temperatures of a dinuclear iron(III) peroxo-species as the precursor of the mu-oxo-compounds.Several spin-paired FeIII compounds containing SN2-bonded tridentate ligands are also reported.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”