Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. Recommanded Product: 1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS, Recommanded Product: 1111-67-7, In a Article, authors is Hou, Lei£¬once mentioned of Recommanded Product: 1111-67-7
Ligand-controlled mixed-valence copper rectangular grid-type coordination polymers based on pyridylterpyridine
Six mixed-valence CuICuII compounds containing 4?-(4-pyridyl)-2,2?:6?,2?-terpyridine (L1) or 4?-(2-pyridyl)-2,2?:6?,2?-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl 2¡¤2H2O or Cu(CH3COO)2¡¤ H2O with the L1 ligand and NH4SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu ICuII compounds [Cu2(L1)(mu-1,1-SCN)(mu-Cl) Cl]n (1), [Cu2(L1)(mu-l)2Cl]n (2), [Cu2(L1)(mu-Br)2Br]n (3), and [Cu 2(L1)(mu-1,3-SCN)2(SCN)]n (4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M4L4 or M 6L6 building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M 4L4 units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH3COO)2¡¤H2O with L2 and NH4SCN under hydrothermal conditions gave mixed-valence CuICuII compound [Cu2(L2)(mu-1,3-SCN) 3]n (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Recommanded Product: 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”