A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 18742-02-4, Name is 2-(2-Bromoethyl)-1,3-dioxolane, molecular formula is C5H9BrO2. In an article, author is Lei, Huarong,once mentioned of 18742-02-4, Formula: C5H9BrO2.
Recent Understanding of Low-Temperature Copper Dynamics in Cu-Chabazite NH3-SCR Catalysts
Dynamic motion of NH3-solvated Cu sites in Cu-chabazite (Cu-CHA) zeolites, which are the most promising and state-of-the-art catalysts for ammonia-assisted selective reduction of NOx (NH3-SCR) in the aftertreatment of diesel exhausts, represents a unique phenomenon linking heterogeneous and homogeneous catalysis. This review first summarizes recent advances in the theoretical understanding of such low-temperature Cu dynamics. Specifically, evidence of both intra-cage and inter-cage Cu motions, given by ab initio molecular dynamics (AIMD) or metadynamics simulations, will be highlighted. Then, we will show how, among others, synchrotron-based X-ray spectroscopy, vibrational and optical spectroscopy (diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) and diffuse reflection ultraviolet-visible spectroscopy (DRUVS)), electron paramagnetic spectroscopy (EPR), and impedance spectroscopy (IS) can be combined and complement each other to follow the evolution of coordinative environment and the local structure of Cu centers during low-temperature NH3-SCR reactions. Furthermore, the essential role of Cu dynamics in the tuning of low-temperature Cu redox, in the preparation of highly dispersed Cu-CHA catalysts by solid-state ion exchange method, and in the direct monitoring of NH3 storage and conversion will be presented. Based on the achieved mechanistic insights, we will discuss briefly the new perspectives in manipulating Cu dynamics to improve low-temperature NH3-SCR efficiency as well as in the understanding of other important reactions, such as selective methane-to-methanol oxidation and ethene dimerization, catalyzed by metal ion-exchanged zeolites.
Interested yet? Keep reading other articles of 18742-02-4, you can contact me at any time and look forward to more communication. Formula: C5H9BrO2.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”