New explortion of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

Related Products of 14347-78-5, Because enzymes can increase reaction rates by enormous factors and tend to be very specific, typically producing only a single product in quantitative yield, they are the focus of active research.you can also check out more blogs about 14347-78-5.

Related Products of 14347-78-5, As an important bridge between the micro and macro material world, chemistry is one of the main methods and means for humans to understand and transform the material world. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, belongs to copper-catalyst compound. In a article, author is Keskin, Zeycan, introduce new discover of the category.

Effects of hydrogen addition into liquefied petroleum gas reductant on the activity of Ag-Ti-Cu/Cordierite catalyst for selective catalytic reduction system

In this study, low temperature activity of Ag-Ti-Cu/Cordierite catalyst was investigated with liquefied petroleum gas (LPG) and hydrogen-liquefied petroleum gas (H-2-LPG) mixture as reductant. The selective catalytic reduction (SCR) catalyst was synthesized by impregnation method and characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analyzes. BET analysis of the catalyst revealed surface area as 12.89 m(2)/g. Silver (Ag), titanium (Ti) and copper (Cu) nanoparticles were observed on the catalyst surface with SEM analysis. XRD analysis showed high dispersion of catalytic elements. The SCR performance tests were carried out at 170-270 degrees C temperature range, 30,000 h(-1) and 40,000 h(-1) space velocities, 1 kW, 2 kW, 3 kW and 4 kW engine loads with diesel engine real exhaust gas sample. NOx conversion efficiency increased significantly in the presence of H-2, especially at low exhaust temperatures. The maximum NOx conversion ratio was obtained as 89.53% with H-2-LPG reductant at 270 degrees C, 4 kW engine load and 30,000 h(-1) space velocity. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Related Products of 14347-78-5, Because enzymes can increase reaction rates by enormous factors and tend to be very specific, typically producing only a single product in quantitative yield, they are the focus of active research.you can also check out more blogs about 14347-78-5.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”