Chemistry, like all the natural sciences, begins with the direct observation of nature¡ª in this case, of matter.14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, belongs to copper-catalyst compound. In a document, author is Totarella, Giorgio, introduce the new discover, SDS of cas: 14347-78-5.
Supported Cu Nanoparticles as Selective and Stable Catalysts for the Gas Phase Hydrogenation of 1,3-Butadiene in Alkene-Rich Feeds
Supported copper nanoparticles are a promising alternative to supported noble metal catalysts, in particular for the selective gas phase hydrogenation of polyunsaturated molecules. In this article, the catalytic performance of copper nanoparticles (3 and 7 nm) supported on either silica gel or graphitic carbon is discussed in the selective hydrogenation of 1,3-butadiene in the presence of a 100-fold excess of propene. We demonstrate that the routinely used temperature ramp-up method is not suitable in this case to reliably measure catalyst activity, and we present an alternative measurement method. The catalysts exhibited selectivity to butenes as high as 99% at nearly complete 1,3-butadiene conversion (95%). Kinetic analysis showed that the high selectivity can be explained by considering H-2 activation as the rate-limiting step and the occurrence of a strong adsorption of 1,3-butadiene with respect to mono-olefins on the Cu surface. The 7 nm Cu nanoparticles on SiO2 were found to be a very stable catalyst, with almost full retention of its initial activity over 60 h of time on stream at 140 degrees C. This remarkable long-term stability and high selectivity toward alkenes indicate that Cu nanoparticles are a promising alternative to replace precious-metal-based catalysts in selective hydrogenation.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 14347-78-5 is helpful to your research. SDS of cas: 14347-78-5.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”