Related Products of 13395-16-9, One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time.Mentioned the application of 13395-16-9.
Phosphate-free synthesis, optical absorption and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 uniform nanocrystals
Copper-based quaternary chalcogenide semiconductor Cu2ZnGeS 4 and Cu2ZnGeSe4 nanocrystals have been synthesized successfully via a simple and convenient one-pot phosphine-free solution approach. Oleylamine was used as both the solvent and reductant for Se or S and benefited the formation of homogeneous quaternary nanocrystals. Scanning transmission electron microscopy-EDS elemental mapping confirms the uniform spatial distribution of four elements in nanocrystals. UV-Vis absorption spectra of Cu2ZnGeS4 and Cu2ZnGeSe4 nanocrystals show strong photon absorption in the entire visible range. The photoresponsive behavior indicates the potential application of Cu 2ZnGeSe4 nanocrystals in solar energy conversion systems.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Related Products of 13395-16-9. In my other articles, you can also check out more blogs about 13395-16-9
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”