Awesome and Easy Science Experiments about Bis(acetylacetone)copper

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 13395-16-9

The transformation of simple hydrocarbons into more complex and valuable products via catalytic C–H bond functionalisation has revolutionised modern synthetic chemistry. 13395-16-9, Name is Bis(acetylacetone)copper, belongs to copper-catalyst compound, is a common compound. SDS of cas: 13395-16-9In an article, once mentioned the new application about 13395-16-9.

Colloidal CZTS nanoparticles and films: Preparation and characterization

Cu2ZnSnS4 (CZTS) compound semiconductor has the advantage of good matching with solar radiation in optical band-gap, large absorption coefficient, non-toxic and especially large abundance ratios of elements, so that CZTS has been considered as a good absorber layer used for the thin-film solar cells with most industrialization promising and environment friendly. In the present work, colloidal CZTS nanocrystals (average size ~8-16 nm) with the band gap of ~1.5 eV were synthesized via wet-chemical processing, using oleylamine (OLA) as solvent and capping molecules. The colloids were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV-Vis-NIR spectroscopy. The structure and morphology of nanocrystals were influenced with the reaction temperature. The resulting nanocrystals were kesterite-phase CZTS when the reaction temperature was lower, but were wurtzite-phase CZTS when the reaction temperature above 275 C. The CZTS films on glass substrates were prepared by drop-casting, from the colloidal 10 wt% CZTS-toluene solution where the CZTS colloids were synthesized at 260 C with three different recipes. The resulting films with different heat-treatments were investigated by XRD, SEM and energy dispersive spectroscopy (EDS). Densified CZTS films (5 lm in thickness) could be obtained by drying and sintering in vacuum. The CZTS films have the band-gap around 1.6-2.0 eV, due to Zn rich and S poor in the films. The dark conductivity and photoconductivity under AM 1.5 irradiation of the CZTS films on ITO glass substrates with different heat-treatments were measured by the AC impedance method.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 13395-16-9

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”