Discovery of 1111-67-7

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1111-67-7, help many people in the next few years.Synthetic Route of 1111-67-7

Synthetic Route of 1111-67-7, Chemistry is a science major with cience and engineering. The main research on the structure and performance of functional materials.Mentioned the application of 1111-67-7, Name is Cuprous thiocyanate.

Organic-inorganic hybrid perovskite solar cells (PSCs) have received considerable attentions due to their low cost, easy fabrication, and high power conversion efficiency (PCE), which achieved a certified PCE of 22.7%. To date, most of high efficiency PSCs were fabricated based on organic hole transporting materials (HTMs) such as molecular spiro-MeOTAD or polymeric PTAA. However, poor stability of PSCs limits its large scale commercial application because of use of additives like tert-butylpyridine (t-BP) and lithium salt. Moreover, relatively low-temperature degradation of organic HTMs is responsible for poor thermal stability of PSCs. Consequently, HTM play a crucial role in realization of efficient and stable PSCs. In order to improve the stability of PCSs, various inorganic HTMs have been developed and applied into PSCs. Recently, the devices based on CuSCN and Cu:NiOx HTMs have demonstrated PCEs over 20%, which is comparable to PCEs of devices based on organic HTMs. Most importantly, stability of PCSs are much improved by the inorganic HTM, which indicates clearly that inorganic HTMs are promising alternative to organic HTMs. Herein, we review recent progress on application of inorganic HTMs in PSCs. We highlight the importance of systematic engineering for each layer and respective interface in the whole device for further improvement of PCE and stability.

I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 1111-67-7, help many people in the next few years.Synthetic Route of 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”