A new application about 1111-67-7

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 1111-67-7 is helpful to your research.

Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. SDS of cas: 1111-67-7, Name is Cuprous thiocyanate, SDS of cas: 1111-67-7, molecular formula is CCuNS. In a article,once mentioned of SDS of cas: 1111-67-7

We have developed semiconductor growth techniques for the coating and filling of nanopores in ceramic-type substrates. The main idea behind this research is to use the large inner surface of ceramics as a template for the realization of semiconductor heterojunctions with extremely large interface area. As porous substrates we use lightly sintered nanocrystalline TiO2 of 5-10 mum thickness. The pore volume in these substrates is approx. 50% and the average pore diameter is 30-50 nm. We are able to establish nanometer thick coatings on the inner surfaces of these substrates or – in a different technique – fill the pore volume with (100 ± 3)% efficiency. The growth techniques involve chemical and electrochemical methods from liquid solutions. Binary, ternary and, most recently, quaternary compounds of the II-VI and I-III-VI material systems were prepared.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 1111-67-7 is helpful to your research.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”