Discover the magic of the Cuprous thiocyanate

Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about Electric Literature of 97925-43-4!, Product Details of 1111-67-7

Reactions catalyzed within inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, Product Details of 1111-67-7, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Product Details of 1111-67-7In an article, authors is Youngme, Sujittra, once mentioned the new application about Product Details of 1111-67-7.

Two new dinuclear mu-CO32- Cu(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO2 and also directly prepared from the carbonate salt. The compounds comprise: [Cu2(mu-CO3)(dpyam)4](ClO4) 2(H2O)4 (1), and [Cu2(mu-CO3)2(dpyam)2](H 2O) (2), (in which dpyam = di-2-pyridylamine). For 1, the carbonate ligand acts as a bridge between two Cu(II) centres showing an anti-anti (mu-eta1-eta1-CO32-) coordination mode with a distorted square-based pyramidal geometry for each Cu(II) environment. Complex 2 involves the di-mu-CO32- bridge with a novel tridentate mu-eta1-eta2-CO32- coordination mode. The geometry around each copper atom is distorted square-based pyramidal. Susceptibility measurements for both complexes show a weak to moderately strong antiferromagnetic coupling with J values of -90.4 and -9.9 cm-1 for 1 and 2, respectively. The tridentate co-ordination mode of the carbonate bridge in 2 has not previously been reported for dinuclear Cu(II) complexes. Also its magnetic behaviour and superexchange pathway are discussed.

Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about Electric Literature of 97925-43-4!, Product Details of 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”