Extended knowledge of CCuNS

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1111-67-7

Electric Literature of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps. In an article, authors is , once mentioned the application of Electric Literature of 1111-67-7, Name is Cuprous thiocyanate,molecular formula is CCuNS, is a conventional compound.

This invention is directed to a five step regio-specific synthesis of 4-bromo-3-methyl-5-propoxy-thiophene-2-carboxylic acid compound of formula 16 comprising the steps of acetalating 3-methyl-thiophene-2-carbaldehyde in an alcohol solvent; iodinating the acetalated 3-methyl-thiophene-2-carbaldehyde in an non-protic polar or hydrocarbon solvent to yield the corresponding iodinated and acetalated 3-methyl-thiophene-2-carbaldehyde product; treating the iodinated and acetalated product with water to yield the corresponding 5-iodo-3-methyl-thiophene-2-carbaldehyde; oxidizing the 5-iodo-3-methyl-thiophene-2-carbaldehyde to the corresponding 5-iodo-3-methyl-thiophene-2-carboxylic acid in ketone solvent; Ullmann coupling of the 5-iodo-3-methyl-thiophene-2-carboxylic acid with alkali metal propoxide salt using a copper catalyst in propanol to yield 3-methyl-5-propoxy-thiophene-2-carboxylic acid; esterifying 3-methyl-5-propoxy-thiophene-2-carboxylic acid to yield the corresponding alkyl 3-methyl-5-propoxy-thiophene-2-carboxylate; brominating the 3-methyl-5-propoxy-thiophene-2-carboxylic acid to yield the corresponding alkyl 4-bromo-3-methyl-5-propoxy-thiophene-2-carboxylate; and basic hydrolyzing the alkyl 4-bromo-3-methyl-5-propoxy-thiophene-2-carboxylate with base to yield 4-bromo-3-methyl-5-propoxy-thiophene-2-carboxylic acid.

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”