Some scientific research about Cuprous thiocyanate

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Reactions catalyzed within inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, Formula: CCuNS, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Formula: CCuNSIn an article, authors is Hehl, Roland, once mentioned the new application about Formula: CCuNS.

Attempts to build up polyanionic networks on the basis of thiocyanatometallates of Cu1 and Ag1 led to the synthesis of three new tris(thiocyanato)dimetallates(I) A[M2(SCN)3] with M = Cu, Ag and A = Me3NH and A = [Me2CNMe2]. The crystal structures show distorted tetrahedral [M(SCN)3(NCS)] and [M(SCN)2(NCS)2] building groups interlinked by SCN bridges. The resulting 3-dimensional frame works accommodate the counter cations in spacious voids. Me3NHCu2(SCN)3 (1) was synthesized by reaction of CuSCN with (CH3)3NHCl in the presence of an excess of KSCN in acetone. 1 crystallizes in the monoclinic space group P21/c with a = 578.4(1), b = 3025.1(5), c = 754.7(3) pm; beta = 112.53; Z = 4. The reaction of CuSCN or AgSCN with (CH3)2NH2Cl and KSCN in acetone resulted in the formation of [Me2CNMe2]Cu2(SCN)3 (2) and [Me2CN-Me2]Ag2(SCN)3 (3). Compound 2 crystallizes in the orthorhombic space group P212121 with a = 720.6(1), b= 1161.5(1), c = 1655.0(2) pm; Z = 4. The isotypical structure of 3 exhibits somewhat larger unit cell dimensions; a = 743.4(1), b = 1222.5(1), c = 1683.9(2) pm.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”