Discover the magic of the Bis(acetylacetone)copper

Interested yet? Keep reading other articles of SDS of cas: 1745-07-9!, name: Bis(acetylacetone)copper

Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. name: Bis(acetylacetone)copper. Introducing a new discovery about 13395-16-9, Name is Bis(acetylacetone)copper, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.

Copper-containing MOFs are found to be active, stable and reusable solid catalysts for three-component couplings of amines, aldehydes and alkynes to form the corresponding propargylamines. Two tandem reactions, including an additional cyclization step, leads to the effective production of indoles and imidazopyridines. In particular, the lamellar compound [Cu(BDC)] (BDC = benzene dicarboxylate) is highly efficient for the preparation of imidazopyridines, although a progressive structural change of the solid to a catalytically inactive compact structure is produced, causing deactivation of the catalyst. Nevertheless, the phase change can be reverted by refluxing in DMF, which recovers the original lamellar structure and the catalytic activity of the fresh material. The use of [Cu(BDC)] for this reaction also prevents the formation of Glaser/Hay condensation products of the alkyne, even when the reaction is performed in air atmosphere. This is a further advantage of [Cu(BDC)] with respect to other homogeneous copper catalysts, for which the use of an inert atmosphere is necessary.

Interested yet? Keep reading other articles of SDS of cas: 1745-07-9!, name: Bis(acetylacetone)copper

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”