Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. Product Details of 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.
The coordination polymers 2?[(CuCN)2(mu-2 Mepyz)], 3?[CuCN(mu-2 Mepyz)] and 3?[CuCN(mu-4 Mepym)] (1-3) (2 Mepyz = 2-methylpyrazine; 4 Mepym = 4-methylpyrimidine) may be prepared by self-assembly in acetonitrile solution at 100 C (1, 3) or without solvent at 20 C (2). All three contain 1?[CuCN] chains that are bridged by the bidentate aromatic ligands into sheets in 1 and 3 D frameworks in 2 and 3. Reaction of CuSCN with these heterocyclic diazines at 100 C leads to formation of the lamellar coordination polymers 2?[(CuSCN)(mu-2 Mepyz)] (4) and 2?[CuSCN · (4 Mepym-kappaN1)] (5), which contain respectively 1?[CuSCN] chains and trans-trans fused 2?[CuSCN] sheets as substructures. The presence of an asymmetric substitution pattern in 2 Mepyz and 4 Mepym induces the adoption of a chiral structure by 2 and 5 (space groups P212121 and P1).
The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”