Something interesting about CCuNS

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, Reference of 1111-67-7, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1111-67-7

Chemistry involves the study of all things chemical – chemical processes, chemical compositions and chemical manipulation – in order to better understand the way in which materials are structured, how they change and how they react in certain situations. Reference of 1111-67-7, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Reference of 1111-67-7In an article, authors is Muehle, Joerg, once mentioned the new application about Reference of 1111-67-7.

CuX-based coordination polymers (X = I, CN, SCN) with diazacrown ethers or cryptands as bridging ligands have been prepared by reaction of CuX with appropriate macrocycle in acetonnitrile/hexane solution at 100C. Whereas [CuI (1,7-DA12C4)] (1) and [CuI(1,10-DA18C6)] (2) (1,7-DA12C4 = 1,7-diaza-12-crown-4, 1,10-DA18C6 = 1,10-diaza-18-crown-6) are both monomeric, ?1[(CuI)2(1,10-DA18C6)] (3) contains infinite chains in which (CuI)2 rings are linked in a mu-N1,N10 manner by thiacrown ether moieties. The distorted tetrahedral coordination of the CuI atoms in 3 is completed by a weak Cu…O interaction (2.393(7) A) to a 1,10-DA18C6 oxygen atom. ? 2[(Cu4I4)(1,10-DAcrypt)2] (4), (1,10-DAcrypt = 1,10-diaza-cryptand [2.2.2]), ? 2[{(CuCN)6(1,7-DA12C4)4]·2CH 3CN (5) and ?2[(CuSCN)2 (1,10-DA18C6] (6) all exhibit lamellar networks with respectively Cu 4I4 cubes, (CuCN)6 hexagons and ?1[(CuSCN)2] double chains as their CuX substructures. 4 can imbibe up to 0.64 mol KNO3/mol cryptand and 6 up to 0.35 mol KNO3/mol 1,10-DA18C6 as a guest lattice. Crystal structures are reported for 1-6, thermal analysis data (TG/DTA) for complexes 2, 3 and 5.

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, Reference of 1111-67-7, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”