Joshi, Priyanka; Perni, Michele; Limbocker, Ryan; Mannini, Benedetta; Casford, Sam; Chia, Sean; Habchi, Johnny; Labbadia, Johnathan; Dobson, Christopher M.; Vendruscolo, Michele published the article 《Two human metabolites rescue a C. elegans model of Alzheimer’s disease via a cytosolic unfolded protein response》. Keywords: cytosolic unfolded protein response metabolite Caenorhabditis Alzheimers disease.They researched the compound: 4-Hydroxyquinoline-2-carboxylic Acid( cas:492-27-3 ).COA of Formula: C10H7NO3. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:492-27-3) here.
Age-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analyzing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer’s disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.
This literature about this compound(492-27-3)COA of Formula: C10H7NO3has given us a lot of inspiration, and I hope that the research on this compound(4-Hydroxyquinoline-2-carboxylic Acid) can be further advanced. Maybe we can get more compounds in a similar way.
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”