Natarajan, K. et al. published their research in Organic & Biomolecular Chemistry in 2022 | CAS: 34946-82-2

Copper(II) trifluoromethanesulfonate (cas: 34946-82-2) belongs to copper catalysts. The transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents has turned up as an exceedingly robust synthetic tool. Copper nanoparticles can catalyze the Ullmann coupling reaction in a wide range of applications.Electric Literature of C2CuF6O6S2

One-pot synthesis of α-sulfoximinophosphonate via Kabachnik-Fields reaction was written by Natarajan, K.;Sharma, Suraj;Irfana Jesin, C. P.;Kataria, Ramesh;Nandi, Ganesh Chandra. And the article was included in Organic & Biomolecular Chemistry in 2022.Electric Literature of C2CuF6O6S2 This article mentions the following:

Herein, we disclose a novel approach for the synthesis of hitherto unknown α-sulfoximinophosphonate via the Kabachnik-Fields reaction of aldehyde, dialkylphosphite and sulfoximine in the presence of InCl3 in THF at 70°C. α-Sulfoximinophosphonate is synthesized in good yields and its synthetic utilities are proved by functionalizing bromine through the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction and reduction of a nitro group through the Bećhamp reduction In the experiment, the researchers used many compounds, for example, Copper(II) trifluoromethanesulfonate (cas: 34946-82-2Electric Literature of C2CuF6O6S2).

Copper(II) trifluoromethanesulfonate (cas: 34946-82-2) belongs to copper catalysts. The transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents has turned up as an exceedingly robust synthetic tool. Copper nanoparticles can catalyze the Ullmann coupling reaction in a wide range of applications.Electric Literature of C2CuF6O6S2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”