A new application about 1111-67-7

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7

Reference of 1111-67-7, In heterogeneous catalysis, catalysts provide a surface to which reactants bind in a process of adsorption. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.In an article, once mentioned the application of 1111-67-7, Name is Cuprous thiocyanate, is a conventional compound.

During past few years, significant research on solution-processable deposition of copper(I)thiocyanate (CuSCN) as an efficient hole transporting layer (HTL) for excitonic solar cells have been successfully reported. Surprisingly, till now only two solvents diisopropyl sulfide and diethyl sulfide are known which have been used for CuSCN film deposition as a HTL for device fabrication. Here, we have used eco-friendly and inexpensive solvent dimethyl sulfoxide (DMSO) for solution processed thin film deposition of CuSCN for organic solar cells. The photovoltaic devices were fabricated using two different donor polymers PCDTBT and PTB7 blended with PC71BM as an acceptor material with device structure of ITO/CuSCN/active layer/Al. The power conversion efficiency (PCE) based on CuSCN using DMSO as a deposition solvent have been achieved up to 4.20% and 3.64% respectively, with relative higher fill factor (FF) as compared to previously reported values in literature. The resultant HTLs were characterized by UV?vis?NIR spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) for better understanding.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”