A new application about Cuprous thiocyanate

The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 1111-67-7 is helpful to your research.

Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. SDS of cas: 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.

(Chemical Equation Presented) A novel electrophilic ipso-cyclization involving an electrophile-exchange process has been developed. In the presence of CuX (X = I, Br, SCN) and electrophilic fluoride reagents, a variety of N-(p-methoxyaryl)propiolamides and 4-methoxyphenyl 3-phenylpropiolate were cyclized to selectively afford the corresponding spiro[4.5]decenones in moderate to good yields. It is noteworthy that two azaquaternary tricyclic products were synthesized through a two-step pathway involving an electrophilic ipso-cyclization and then an intramolecular Heck reaction.

The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 1111-67-7 is helpful to your research.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”