A new application about Cuprous thiocyanate

Interested yet? Keep reading other articles of Related Products of 300-87-8!, Related Products of 1111-67-7

Related Products of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps. In an article, authors is Roose, Bart, once mentioned the application of Related Products of 1111-67-7, Name is Cuprous thiocyanate,molecular formula is CCuNS, is a conventional compound.

Lead halide perovskite solar cells have rapidly achieved high efficiencies comparable to established commercial photovoltaic technologies. The main focus of the field is now shifting toward improving the device lifetime. Many efforts have been made to increase the stability of the perovskite compound and charge-selective contacts. The electron and hole selective contacts are responsible for the transport of photogenerated charges out of the solar cell and are in intimate contact with the perovskite absorber. Besides the intrinsic stability of the selective contacts themselves, the interfaces at perovskite/selective contact and metal/selective contact play an important role in determining the overall operational lifetime of perovskite solar cells. This review discusses the impact of external factors, i.e., heat, UV-light, oxygen, and moisture, and measured conditions, i.e., applied bias on the overall stability of perovskite solar cells (PSCs). The authors summarize and analyze the reported strategies, i.e., material engineering of selective contacts and interface engineering via the introduction of interlayers in the aim of enhancing the device stability of PSCs at elevated temperatures, high humidity, and UV irradiation. Finally, an outlook is provided with an emphasis on inorganic contacts that is believed to be the key to achieving highly stable PSCs.

Interested yet? Keep reading other articles of Related Products of 300-87-8!, Related Products of 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”