A new application about Cuprous thiocyanate

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Researchers are common within chemical engineering and are often tasked with creating and developing new chemical techniques, frequently combining other advanced and emerging scientific areas. Product Details of 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate

Copper, most commonly in the form of copper oxide, is used in the majority of marine antifoulings globally, but some paint companies do not allow their copper oxide based antifoulings to be used on aluminium hulls. This is because aluminium is more anodic in the electrochemical series than copper and if the two are in direct connect in sea water, the aluminium will corrode away. This galvanic reaction only occurs if copper metal is in direct contact with aluminium, and since modern copper oxide based antifoulings contain virtually no metallic copper there appears to be no valid reason for the ultra-cautious approach regarding the use of copper oxide based antifoulings on aluminium hulls. A number of different copper-based commercial antifoulings were applied on suitably prepared Marine-grade aluminium panels, along with an un-coated control panel. The panels were immersed in seawater. Furthermore a laboratory experiment was also undertaken where coated aluminium panels were submerged in a salt water solution as a controlled experiment. All the samples were then analysed using electron microscopy. Copper leaching out of copper oxide based antifoulings had no effect on the corrosion of Marine-grade aluminium.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”