Mondal, Kali Prasanna; Bera, Sambhunath; Gupta, Ajay; Kumar, Dileep; Reddy, V. Raghavendra; Das, Gangadhar; Singh, Arnab; Yamada- Tamakura, Yukiko published an article about the compound: Aluminum triquinolin-8-olate( cas:2085-33-8,SMILESS:[O-]C1=C2N=CC=CC2=CC=C1.[O-]C3=C4N=CC=CC4=CC=C3.[O-]C5=C6N=CC=CC6=CC=C5.[Al+3] ).Application In Synthesis of Aluminum triquinolin-8-olate. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:2085-33-8) through the article.
Growth behavior and evolution of magnetism as a function of Fe thin film thickness onto organic semiconductor tris(8-hydroxyquinoline)-aluminum, (Alq3) thin film was investigated in-situ using elec. resistance and magneto-optic Kerr effect (MOKE) measurements, resp. The variation of elec. resistance with Fe film thickness reveals the Volmer-Weber growth of Fe on Alq3 film. RHEED (RHEED) pattern resembles polycrystalline BCC structure of Fe. Ex-situ x-ray reflectivity (XRR) measurement from the Fe/Alq3/Si sample reveals that Fe diffuses into Alq3 to form an alloy layer of 50 Å thickness with Fe volume fraction of 0.4. In-situ MOKE study affirms anomalous magnetic behavior at the initial stage of Fe growth. Initially hysteresis loop appears and develops in a particular direction, and then vanishes at certain thickness. With further growth of Fe hysteresis loop appears again and grows in the opposite direction. The observed unusual changes in magnetic behavior as a function of Fe thickness may be explained in terms of the contribution from the magnetic Fe-Alq3 alloy present in the intermix layer, the metallic Fe on top of Alq3 layer, and their antiferromagnetic coupling.
From this literature《Growth behavior, physical structure, and magnetic properties of iron deposited on Tris(8-hydroxy quinoline)-aluminum》,we know some information about this compound(2085-33-8)Application In Synthesis of Aluminum triquinolin-8-olate, but this is not all information, there are many literatures related to this compound(2085-33-8).
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”