Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4
General procedure: 0.022g (0.222mmol) of CuCl was added to 0.180g (0.109mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution at -35C. After stirring the resultant solution for 5min, the yellowish brown solution formed, which was filtered, and the filtrate was concentrated. A solution of Et2O (60mL) was added into the filtrate to precipitate the product at -35C. The precipitate was then washed with Et2O and dried to give [PPh4]2[3a] (0.107g, 0.058mmol, 53% based on [PPh4]2[1]). Similarly, under the same reaction conditions, using CuBr, we have isolated a yellowish brown solid of [PPh4]2[3b] (80% based on [PPh4]2[1]) upon crystallization from Et2O/MeCN.
As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4
Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”