Analyzing the synthesis route of Copper(I) bromide

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

7787-70-4, General procedure: To a dry and degassed dichloromethane (10mL) solution of 2,2?-dipyridylamine (1mmol) was added CuX (1mmol). The mixture was kept stirring under nitrogen at ambient temperature. After 1h, a yellow precipitate was formed. To the resulting suspension was added dropwise with stirring a solution of triphenylphosphine (1mmol) in dichloromethane (5mL). The mixture was stirred for another 4h, and then the solvent was evaporated to give a white or yellow residue. The solid residue was extracted with 10mL absolute dichloromethane under the nitrogen atmosphere while the extract was filtered and transferred to a nitrogen-protected flask. 10mL hexane was layered above the resulting solution afforded crystals of the complexes, which were washed with hexane.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Wu, Fengshou; Tong, Hongbo; Wang, Kai; Wang, Zheng; Li, Zaoying; Zhu, Xunjin; Wong, Wai-Yeung; Wong, Wai-Kwok; Journal of Photochemistry and Photobiology A: Chemistry; vol. 318; (2016); p. 97 – 103;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”