Archives for Chemistry Experiments of Cuprous thiocyanate

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Electric Literature of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 1111-67-7, molcular formula is CCuNS, introducing its new discovery.

Syntheses, crystal structures and luminescent properties of two one-dimensional coordination polymers [CuX(dmpzm)]n (X=CN, NCS; Dmpzm=bis(3,5-dimethylpyrazolyl)methane)

Reactions of CuX (X=CN, NCS) with bis(3,5-dimethylpyrazolyl)methane (dmpzm) gave rise to two new coordination polymers [CuX(dmpzm)]n (X=CN (2), NCS (3)). Compounds 2 and 3 were characterized by elemental analysis, IR spectra and X-ray crystallography. The molecular structure of 2 has a one-dimensional zigzag chain of [CuCN(dmpzm)] units while that of 3 consists of a one-dimensional single-strand spiral chain of [CuNCS(dmpzm)] units. The luminescence properties of CuX (X=I (1), CN (2), NCS (3)) adducts of dmpzm along with free dmpzm were also investigated.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”