Awesome and Easy Science Experiments about 1111-67-7

But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! Read on for other articles about COA of Formula: C34H32ClFeN4O4!, Related Products of 1111-67-7

Related Products of 1111-67-7, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1111-67-7, Cuprous thiocyanate, introducing its new discovery.

Studies on tris[thiocyanato-mu-thiocyanato-copper(I)] tris(pyridyl)molybdenum(III) and related complexes

Tetranuclear complexes of the type L3Mo[M(SCN)2]3 [M = Cu(I) or Ag(I); L = pyridine, nicotinamide or triphenylphosphine] have been prepared and characterised by elemental analyses, molar conductance,-magnetic moment, IR and electronic spectral studies. These studies reveal the presence of bridged and terminally S-bonded thiocyanates in the pyridine and nicotinamide complexes while bridged and terminally N-bonded thiocyanate groups were present in the triphenylphosphine complexes. Copper(I) and silver(I) are dicoordinated while molybdenum(III) is octahedral which has been supported by the HSAB principle.

But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! Read on for other articles about COA of Formula: C34H32ClFeN4O4!, Related Products of 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”