Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. HPLC of Formula: CCuNS, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1111-67-7, in my other articles.
One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, HPLC of Formula: CCuNS, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS
CHARACTERIZATION OF THE ADDUCTS FORMED BY Cu(CN) AND Cu(NCS) WITH BIQUINOLINE. THE CRYSTAL STRUCTURE OF THE POLYMERIC CYANO-COMPOUND CONTAINING BOTH LINEAR AND TETRAHEDRALLY CO-ORDINATED COPPER(I), <n>
The salts Cu(CN) and Cu(NCS) react with 2,2′-biquinoline (bq = C18H12N2) to give the adducts <n> (1) and <n> (2).Complex (1) crystallyzes in space group C2/m with cell dimensions a = 13.626(2), b = 15.322(2), c = 7.908(1) Angstroem, beta = 95.89(1) deg, and Z = 2.It consists of chains of CN-bridged copper atoms, each copper being either linearly or tetrahedrally co-ordinated.The tetrahedral copper is also co-ordinated to bq.Pairs of bq molecules belonging to paralell chains stack with an interplanar spacing of 3.35 Angstroem.Complex (2) is microcrystalline and from hot dimethyl sulphoxide gives crystals of (3).The polarization properties of the i.r. and electronic bands of complex (1) have been determined.In the optical spectrum two metal-to-ligand charge-transfer transitions could be detected.Comparison of the spectroscopic properties of the three compounds indicates a lower degree of polymerization for (3).
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. HPLC of Formula: CCuNS, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1111-67-7, in my other articles.
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”