Awesome and Easy Science Experiments about Cuprous thiocyanate

Because enzymes can increase reaction rates by enormous factors and tend to be very specific, category: copper-catalyst, typically producing only a single product in quantitative yield, they are the focus of active research.you can also check out more blogs about category: copper-catalyst

Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn¡¯t involve a screen. Cuprous thiocyanate,introducing its new discovery. category: copper-catalyst

Assembly of chiral two- and three-dimensional copper(I) pseudohalide based coordination polymers with asymmetrically substituted pyrazine and pyrimidine ligands

The coordination polymers 2?[(CuCN)2(mu-2 Mepyz)], 3?[CuCN(mu-2 Mepyz)] and 3?[CuCN(mu-4 Mepym)] (1-3) (2 Mepyz = 2-methylpyrazine; 4 Mepym = 4-methylpyrimidine) may be prepared by self-assembly in acetonitrile solution at 100 C (1, 3) or without solvent at 20 C (2). All three contain 1?[CuCN] chains that are bridged by the bidentate aromatic ligands into sheets in 1 and 3 D frameworks in 2 and 3. Reaction of CuSCN with these heterocyclic diazines at 100 C leads to formation of the lamellar coordination polymers 2?[(CuSCN)(mu-2 Mepyz)] (4) and 2?[CuSCN ¡¤ (4 Mepym-kappaN1)] (5), which contain respectively 1?[CuSCN] chains and trans-trans fused 2?[CuSCN] sheets as substructures. The presence of an asymmetric substitution pattern in 2 Mepyz and 4 Mepym induces the adoption of a chiral structure by 2 and 5 (space groups P212121 and P1).

Because enzymes can increase reaction rates by enormous factors and tend to be very specific, category: copper-catalyst, typically producing only a single product in quantitative yield, they are the focus of active research.you can also check out more blogs about category: copper-catalyst

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”