Awesome Chemistry Experiments For 1111-67-7

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 1111-67-7 is helpful to your research.

Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. Product Details of 1111-67-7, Name is Cuprous thiocyanate, Product Details of 1111-67-7, molecular formula is CCuNS. In a article,once mentioned of Product Details of 1111-67-7

Under different situations, solvothermal reactions of 3,5-diethyl-4-(4- pyridyl)-pyrazole (HL) with CuX or CuX2 (X = Cl, Br, I, and SCN) afforded five copper(I) coordination polymers, {CuX[CuL]3· solvent}n (X = Cl, 1; Br, 2; I, 3; X = SCN and solvent = MeCN, 4) and {Cu2I2[CuL]3}n (5). X-ray diffraction analyses show that all the complexes have trinuclear [CuL] 3 (referred as Cu3) secondary building units featuring planar nine-membered Cu3N6 metallocycles with three peripheral pyridyl groups as connectors, which are further linked by CuX or Cu2X2 motifs to generate single- or double-strand chains. Interestingly, the Cu(I) atoms within the Cu3 units in 1-5 behave as coordinatively unsaturated pi-acid centers to contact soft halide/pseudohalide X atoms of CuX and Cu2X2 motifs, which lead to novel sandwich substructures of [(Cu3)(Cu2X2)(Cu 3)] (X = Br, I, and SCN) in 2-4. In addition, both the pi-acid [Cu3]···X contacts and intertrimer Cu···Cu interactions contribute to the one-dimensional (1D) double-strand and 2D/3D supramolecular structures of 1-5. All of these complexes exhibit high thermostability and bright solid-state phosphorescence upon exposure to UV radiation at room temperature. The emissions arise from the mixtures of metal-centered charge transfer, metal to ligand charge transfer, and halide-to-ligand charge transfer excited states, and can be tuned by intermolecular pi-acid [Cu3]···halide/ pseudohalide contacts.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 1111-67-7 is helpful to your research.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”