Brief introduction of 1111-67-7

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Electric Literature of 1111-67-7, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a article£¬once mentioned of 1111-67-7

Synthesis, crystal structure and fluorescent property of two-dimensional Cu(I) coordination polymers with cyanide, thiocyanate and triazole bridges

Hydrothermal reaction of CuCN, K3[Fe(CN)6] with 4-(6-amino-2-pyridyl)-1,2,4-triazole (apt) afforded a coordination polymer [Cu7(CN)7(apt)2]n (1), while solvothermal reaction of CuSCN with apt in acetonitrile afforded a coordination polymer [Cu2(SCN)2(apt)]n (2). Complex 1 shows two-dimensional polymeric network with large hexagonal channels constructing by CuCN chains and tridentate apt ligands. Complex 2 shows two-dimensional polymeric framework assembled by ladder-like [Cu(SCN)]n chains and bidentate apt ligands, in which thiocyanate acts as a tridentate bridging ligand. Both polymers are thermal stable and strong fluorescent in the solid state.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”