Brief introduction of 1111-67-7

The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 1111-67-7 is helpful to your research. Application of 1111-67-7

Application of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps. In an article, authors is Peng, Wei, once mentioned the application of Application of 1111-67-7, Name is Cuprous thiocyanate,molecular formula is CCuNS, is a conventional compound.

Ultra-high transparent p-type copper iodide (CuI) thin films were fabricated by solid iodization of evaporated Cu precursor layers at room temperature. The effect of the thickness on microstructure, binding energy and optoelectrical properties is systematically studied. X-ray diffraction measurements show the polycrystalline nature of the CuI thin films with zincblende type structure. The X-ray photoelectron spectroscopy (XPS) analysis indicates that the oxidation state of Cu is +1 and the estimated value of [Cu]/[I] at 100 nm is 0.87. Excess iodide ions trap considerable holes, causing CuI thin films to exhibit the p-type conductivity, which is consistent with the results of the Hall effect measurement and the non-linear characteristics of the CuI/ITO structure. Moreover, the CuI thin films with thickness of 100 nm exhibits an ultra-high optical transmittance of 95.5% in the wavelength of 380?780 nm and an excellent conductivity of 34 S/cm. These results prove the great potential of CuI as a promising p-type optoelectronic material.

The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 1111-67-7 is helpful to your research. Application of 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”