Brief introduction of 2085-33-8

Different reactions of this compound(Aluminum triquinolin-8-olate)Application of 2085-33-8 require different conditions, so the reaction conditions are very important.

Application of 2085-33-8. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Aluminum triquinolin-8-olate, is researched, Molecular C27H18AlN3O3, CAS is 2085-33-8, about Improvement of inverted planar heterojunction solar cells efficiency by using KI/Alq3 hybrid exciton blocking layer. Author is Lamkaouane, Hind; Ftouhi, Hajar; Zazoui, Mimoun; Addou, Mohammed; Cattin, Linda; Bernede, Jean-Christian; Louarn, Guy; Mir, Yamina.

The exciton blocking layer (EBL) as an interfacial layer is extremely critical in determining the organic photovoltaic cell (OPV) performances. Here, we studied inverted planar heterojunction solar cells PHJ-OPVs with the following configuration ITO/EBL/C60/CuPc/MoO3/Al. Upon the EBL functionality which can act as an exciton blocking layer and allows the electron collection at the cathode, we proposed the insertion of hybrid EBL consisted of KI/Alq3 thin layer. The Alq3 is known as an EBL due to its broad bandgap, whereas we found that when a thin layer of 1 nm of KI is introduced in ITO/Alq3 interface, the KI decomposed during the thermal deposition, and only potassium interacts and diffuses in the Alq3 layer, which effectively enhances the electrons collection at the ITO/C60 interfaces leading to the improvement of open-circuit voltage (Voc), and device power conversion efficiency by 36% than the device using Alq3 alone as EBL.

Different reactions of this compound(Aluminum triquinolin-8-olate)Application of 2085-33-8 require different conditions, so the reaction conditions are very important.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”