Brief introduction of Bis(acetylacetone)copper

We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 13395-16-9, and how the biochemistry of the body works.Synthetic Route of 13395-16-9

Synthetic Route of 13395-16-9, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.13395-16-9, Name is Bis(acetylacetone)copper, molecular formula is C10H16CuO4. In a Article£¬once mentioned of 13395-16-9

Transition metal complexes containing the S(NtBu)42- tetraimidosulfate dianion

Three novel metal complexes [(acac)2Cu2(NtBu)4S] (3), [Li(thf)4]2[I4Cd2(NtBu)4S] (4) and [(thf)2Li{(SiMe3)2N}Zn(NtBu)4S] (5) are prepared from the intended transmetalation of the dilithium complex of N,N?,N??,N???-tetrakis(tert-butyl)tetraimidosulfate [(thf)4Li2(NtBu)4S] (1). The two lithium cations are replaced by either the cationic (acac)Cu(ii) moiety, the neutral I2Cd(ii) residue or only a single lithium cation is substituted by the cationic (Me3Si)2NZn(ii) fragment. The complexes show two main results: first the S(NtBu)42- tetrahedron can serve as a ligand to transition metals from the soft Cu(ii) to the harder Zn(ii) at opposite sides and second the S-N bond distances vary only marginally in response to the various metals and the four distances constantly sum up to 6.38(2) A. Hence the electropositive sulfur atom responds by internal shift to the metal-polarized negative charge at the outside of the S(NR)42- tetrahedron. This journal is

We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 13395-16-9, and how the biochemistry of the body works.Synthetic Route of 13395-16-9

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”